Lithologic Reservoirs ›› 2021, Vol. 33 ›› Issue (2): 171-179.doi: 10.12108/yxyqc.20210218

• OIL AND GAS FIELD DEVELOPMENT • Previous Articles     Next Articles

Difference analysis of isosteric heat of methane adsorption on shale based on fugacity and pressure: a case study of Yanchang Formation in Yanchang exploration area

XUE Pei1,2, ZHANG Lixia2, LIANG Quansheng2, SHI Yi3   

  1. 1. Northwest University of Political Science and Law, Xi'an 710063, China;
    2. Research Institute, Shaanxi Yanchang Petroleum(Group) Co., Ltd., Xi'an 710075, China;
    3. Yanchang Petroleum Group Exploration Company, Yan'an 716000, Shaanxi, China
  • Received:2020-04-18 Revised:2020-06-05 Online:2021-04-01 Published:2021-03-31

Abstract: In order to improve the calculation method of isosteric heat of adsorption,clarify the thermodynamic characteristics of adsorption of CH4 by continental shale and reveal its adsorption mechanism,shale samples from Yanchang Formation in Yanchang exploration area were selected to carry out isothermal adsorption experiment of CH4 adsorption on shale at different temperatures,and the difference of isosteric heat of adsorption based on fugacity-absolute adsorption capacity and pressure-absolute adsorption capacity was analyzed by using absolute adsorption capacity curve. The results show that:(1) Fugacity is less than pressure,and in the pressure range of 0.36-2.21 MPa,the difference between fugacity and pressure is small. With the temperature decreasing and the pressure increasing,the difference increases.(2) The isotherm curves based on fugacity and pressure have obvious monotonic increasing linear characteristics,but the slope of isosteric heat of adsorption curve obtained by pressure-absolute adsorption capacity is larger than that obtained by fugacity-absolute adsorption capacity,which indicates that the intermolecular force of adsorbate has a great influence on the calculation results of isosteric heat of adsorption based on pressure-absolute adsorption capacity.(3) In the absolute adsorption capacity range of 0.01-0.35 mmol/g,the relative deviation of isosteric heat of adsorption obtained based on fugacity-absolute adsorption capacity and pressure-absolute adsorption capacity is -86.54%-57.01%. The data of fugacityabsolute adsorption capacity should be used as the basic data for the calculation of isosteric heart of adsorption in the thermodynamic evaluation of shale gas adsorption system.

Key words: Clasius-Clayperon equation, fugacity, isosteric heat of adsorption, shale, Yanchang Formation

CLC Number: 

  • P618.11
[1] CURTIS J B. Fractured shale-gas systems. AAPG Bulletin, 2002, 86(11):1921-1938.
[2] DONGMIN S, MARTIN B, FLOR S, et al. Comparison of experimental techniques for measuring isosteric heat of adsorption. Adsorption, 2000, 6(4):275-286.
[3] 周来, 冯启言, 秦勇.CO2和CH4在煤基质表面竞争吸附的热力学分析.煤炭学报, 2011, 36(8):1307-1311. ZHOU L, FENG Q Y, QIN Y. Thermodynamic analysis of competitive adsorption of CO2 and CH4 on coal matrix. Journal of China Coal society, 2011, 36(8):1307-1311.
[4] 崔永君, 张庆玲, 杨锡禄.不同煤的吸附性能及等量吸附热的变化规律.天然气工业, 2003, 23(7):130-131. CUI Y J, ZHANG Q L, YANG X L. The change rules of adsorption capacity and isosteric heat of adsorption of different coals. Natural Gas Industry, 2003, 23(7):130-131.
[5] 卢守青, 王亮, 秦立明.不同变质程度煤的吸附能力与吸附热力学特征分析.煤炭科学技术, 2014(6):130-135. LU S Q, WANG L, QIN L M. Analysis on adsorption capacity and adsorption thermodynamic characteristics of different metamorphic degree coals. Coal Science and Technology, 2014(6):130-135.
[6] 郭为, 熊伟, 高树生, 等.温度对页岩等温吸附/解吸特征影响. 石油勘探与开发, 2013, 40(4):481-485. GUO W, XIONG W, GAO S H, et al. Impact of temperature on the isothermal adsorption/desorption characteristics of shale gas. Petroleum Exploration and Development, 2013, 40(4):481-485.
[7] 李晓媛, 曹峰, 岳高凡, 等.柴达木盆地东部石炭系页岩吸附特性实验研究.地学前缘, 2016, 23(5):95-102. LI X Y, CAO F, YUE G F, et al. The experimental study of adsorption characteristics of Carboniferous shale in eastern Qaidam. Earth Science Frontiers, 2016, 23(5):95-102.
[8] 白建平, 张典坤, 杨建强, 等.寺河3号煤甲烷吸附解吸热力学特征.煤炭学报, 2014, 39(9):1812-1819. BAI J P, ZHANG D K, YANG J Q, et al. Thermodynamic characteristics of adsorption-desorption of methane in coal seam 3 at Sihe coal mine. Journal of China Coal Society, 2014, 39(9):1812-1819.
[9] 李树刚, 白杨, 林海飞, 等. CH4, CO2和N2多组分气体在煤分子中吸附热力学特性的分子模拟. 煤炭学报, 2018, 43(9):114-121. LI S G, BAI Y, LIN H F, et al. Molecular simulation of adsorption thermodynamics of multicomponent gas in coal. Journal of China Coal Society, 2018, 43(9):114-121.
[10] 林海飞, 蔚文斌, 李树刚, 等.煤体吸附CH4及CO2热力学特性试验研究.中国安全科学学报, 2018, 28(6):129-134. LIN H F, WEI W B, LI S G, et al. Experimental study on thermodynamics characteristics of CH4 and CO2 adsorption on coal. China Safety Science Journal, 2018, 28(6):129-134.
[11] 蔺亚兵, 马东民, 刘钰辉, 等.温度对煤吸附甲烷的影响实验. 煤田地质与勘探, 2012(6):24-28. LIN Y B, MA D M, LIU Y H, et al. Experiment of the influence of temperature on coalbed methane adsorption. Coal Geology & Exploration, 2012(6):24-28.
[12] 岳高伟, 王兆丰, 康博.基于吸附热理论的煤-甲烷高低温等温吸附线预测.天然气地球科学, 2015, 26(1):148-153. YUE G W, WANG Z F, KANG B. Prediction for isothermal adsorption curve of coal/CH4 based on adsorption heat theory. Natural Gas Geoscience, 2015, 26(1):148-153.
[13] 杨峰, 宁正福, 王庆, 等.甲烷在页岩上的吸附热力学.中南大学学报(自然科学版), 2014, 45(8):2871-2877. YANG F, NING Z F, WANG Q, et al. Thermodynamic analysis of methane adsorption on gas shale. Journal of Central South University(Science and Technology), 2014, 45(8):2871-2877.
[14] 杨峰, 宁正福, 刘慧卿, 等.页岩对甲烷的等温吸附特性研究. 特种油气藏, 2013, 20(5):133-136. YANG F, NING Z F, LIU H Q, et al. Methane adsorption characteristics of gas shale. Special Oil & Gas Reservoirs, 2013, 20(5):133-136.
[15] 马东民, 曹石榴, 李萍, 等.页岩气与煤层气吸附/解吸热力学特征对比.煤炭科学技术, 2015, 43(2):64-67. MA D M, CAO S L, LI P, et al. Comparison on adsorption and desorption thermodynamics features between shale gas and coalbed methane. Coal Science and Technology, 2015, 43(2):64-67.
[16] PAN H, RITTER J A, BALBUENA P B. Examination of the approximations used in determining the isosteric heat of adsorption from the Clausius-Clapeyron equation. Langmuir, 1998, 14(21):6323-6327.
[17] 周理, 吕昌忠, 王怡林, 等.述评超临界温度气体在多孔固体上的物理吸附.化学进展, 1999, 11(3):221-226. ZHOU L, LYU C Z, WANG Y L, et al. Physisorption of gases on porous solids at above-critical temperatures.Progress in Chemistry, 1999, 11(3):221-226.
[18] ZHENG Y N, LI Q Z, YUAN C C, et al. Thermodynamic analysis of high-pressure methane adsorption on coal-based activated carbon. Fuel, 2018, 230:172-184.
[19] 薛培, 张丽霞, 梁全胜, 等.陆相页岩吸附CH4的热力学特征. 天然气工业, 2019, 39(11):64-73. XUE P, ZHANG L X, LIANG Q S, et al. Thermodynamic characteristics of CH4 adsorption by continental shale. Natural Gas Industry, 2019, 39(11):64-73.
[20] 中华人民共和国国家质量监督检验检疫总局, 中华人民共和国国家标准化管理委员会. GB/T 19560-2008煤的高压等温吸附试验方法.北京:中国标准出版社, 2008. State Administration of Quality Supervision, Inspection and Quarantine of the PRC & Standardization Administration of the PRC. GB/T 19560-2008 Experimental method of high-pressure isothermal adsorption to coal. Beijing:Standard Press of China, 2008.
[21] 周尚文, 王红岩, 薛华庆, 等.页岩过剩吸附量与绝对吸附量的差异及页岩气储量计算新方法.天然气工业, 2016, 36(11):12-20. ZHOU S W, WANG H Y, XUE H Q, et al. Difference between excess and absolute adsorption capacity of shale and a new shale gas reserve calculation method. Natural Gas Industry, 2016, 36(11):12-20.
[22] ROBINSON D B, PENG D Y, CHUNG Y K. The development of the Peng-Robinson equation and its application to phase equilibrium in a system containing methanol. Fluid Phase Equilibria, 1985, 24(1/2):25-41.
[23] OZAWA S, KUSUMI S, OGINO Y. Physical adsorption of gases at high pressure. IV. An improvement of the Dubinin-Astakhov adsorption equation. Journal of Colloid and Interface Science, 1976, 56(1):83-91.
[24] 张珏成. 纯物质逸度定义的讨论. 上海工程技术大学学报, 2004, 18(2):14-17. ZHANG J C. Discussion about fugacity definition of pure matter. Journal of Shanghai University of Engineering Science, 2004, 18(2):14-17.
[25] 鄢浩, 陈晋阳.化工热力学.北京:中国石化出版社, 2011. YAN H, CHEN J Y. Chemical engineering thermodynamics. Beijing:China Petrochemical Press, 2011.
[26] 傅献彩, 沈文霞, 姚天扬, 等.物理化学.北京:高等教育出版社, 2005. FU X C, SHEN W X, YAO T Y, et al. Physical chemistry. Beijing:Higher Education Press, 2005.
[27] AZAHAR F H M, MITRA S, YABUSHITA A, et al. Improved model for the isosteric heat of adsorption and impacts on the performance of heat pump cycles. Applied Thermal Engineering, 2018, 143:688-700.
[28] MENG M, QIU Z S, ZHONG R Z, et al. Adsorption characteristics of supercritical CO2/CH4 on different types of coal and a machine learning approach. Chemical Engineering Journal, 2019, 368:847-864.
[29] KONG S Q, HUANG X, LI K J, et al. Adsorption/desorption isotherms of CH4 and C2 H6 on typical shale samples. Fuel, 2019, 255:115623.
[30] ZHENG Q R, JI X W, GAO S, et al. Analysis of adsorption equilibrium of hydrogen on graphene sheets. International Journal of Hydrogen Energy, 2013, 38(25):10896-10902.
[31] WANG K, QIAO S Z, HU X J. Study of isosteric heat of adsorption and activation energy for surface diffusion of gases on activated carbon using equilibrium and kinetics information. Separation and Purification Technology, 2004, 34(1/3):165-176.
[32] RUTHVEN D M. Principle of adsorption and adsorption process. New York:John Wilev & Sons Inc., 1984.
[1] ZHAO Jun, LI Yong, WEN Xiaofeng, XU Wenyuan, JIAO Shixiang. Prediction of shale formation pore pressure based on Zebra Optimization Algorithm-optimized support vector regression [J]. Lithologic Reservoirs, 2024, 36(6): 12-22.
[2] BAI Yubin, LI Mengyao, ZHU Tao, ZHAO Jingzhou, REN Haijiao, WU Weitao, WU Heyuan. Geochemical characteristics of source rocks and evaluation of shale oil “sweet spot”of Permian Fengcheng Formation in Mahu Sag [J]. Lithologic Reservoirs, 2024, 36(6): 110-121.
[3] HONG Zhibin, WU Jia, FANG Peng, YU Jinyang, WU Zhengyu, YU Jiaqi. Heterogeneity of soluble organic matter in shale and occurrence state of shale oil under nanoconfinement [J]. Lithologic Reservoirs, 2024, 36(6): 160-168.
[4] YANG Xuefeng, ZHAO Shengxian, LIU Yong, LIU Shaojun, XIA Ziqiang, XU Fei, FAN Cunhui, LI Yutong. Main controlling factors of shale gas enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Ningxi area,Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 99-110.
[5] WANG Zixin, LIU Guangdi, YUAN Guangjie, YANG Henglin, FU Li, WANG Yuan, CHEN Gang, ZHANG Heng. Characteristics and reservoir control of source rocks of Triassic Chang 7 member in Qingcheng area,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(5): 133-144.
[6] YAN Jianping, LAI Siyu, GUO Wei, SHI Xuewen, LIAO Maojie, TANG Hongming, HU Qinhong, HUANG Yi. Research progress on casing deformation types and influencing factors in geological engineering of shale gas wells [J]. Lithologic Reservoirs, 2024, 36(5): 1-14.
[7] XU Tianlu, WU Chengmei, ZHANG Jinfeng, CAO Aiqiong, ZHANG Teng. Natural fracture characteristics and fracture network simulation in shale reservoirs of Permian Lucaogou Formation in Jimsar Sag [J]. Lithologic Reservoirs, 2024, 36(4): 35-43.
[8] MOU Feisheng, YIN Xiangdong, HU Cong, ZHANG Haifeng, CHEN Shijia, DAI Linfeng, LU Yifan. Distribution characteristics and controlling factors of tight oil of Triassic Chang 7 member in northern Shaanxi area,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(4): 71-84.
[9] BAO Hanyong, ZHAO Shuai, ZHANG Li, LIU Haotian. Exploration achievements and prospects for shale gas of Middle-Upper Permian in Hongxing area,eastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(4): 12-24.
[10] SHEN Youyi, WANG Kaifeng, TANG Shuheng, ZHANG Songhang, XI Zhaodong, YANG Xiaodong. Geological modeling and“sweet spot”prediction of Permian coal measures shale reservoirs in Yushe-Wuxiang block,Qinshui Basin [J]. Lithologic Reservoirs, 2024, 36(4): 98-108.
[11] ZOU Liansong, XUWenli, LIANG Xiwen, LIU Haotian, ZHOU Kun, HOU Fei, ZHOU Lin, WEN Huaguo. Sedimentary characteristics and sources of shale of Dongyuemiao member of Lower Jurassic Ziliujing Formation in eastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(4): 122-135.
[12] ZHU Biao, ZOU Niuniu, ZHANG Daquan, DU Wei, CHEN Yi. Characteristics of shale pore structure and its oil and gas geological significance of Lower Cambrian Niutitang Formation in Fenggang area,northern Guizhou [J]. Lithologic Reservoirs, 2024, 36(4): 147-158.
[13] SHAO Wei, ZHOU Daorong, LI Jianqing, ZHANG Chengcheng, LIU Tao. Key factors and favorable exploration directions for oil and gas enrichment in back margin sag of thrust nappe in Lower Yangtze [J]. Lithologic Reservoirs, 2024, 36(3): 61-71.
[14] DUAN Yifei, ZHAO Weiwei, YANG Tianxiang, LI Fukang, LI Hui, WANG Jianan, LIU Yuchen. Source-reservoir characteristics and accumulation rules of shale gas of Permian Shanxi Formation in Yan'an area, Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(3): 72-83.
[15] HE Wenyuan, ZHAO Ying, ZHONG Jianhua, SUN Ningliang. Characteristics and significance of micron pores and micron fractures in shale oil reservoirs of Cretaceous Qingshankou Formation in Gulong sag,Songliao Basin [J]. Lithologic Reservoirs, 2024, 36(3): 1-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] PANG Xiongqi,CHEN Dongxia, ZHANG Jun. Concept and categorize of subtle reservoir and problems in its application[J]. Lithologic Reservoirs, 2007, 19(1): 1 -8 .
[2] LEI Bianjun, ZHANG Ji,WANG Caili,WANG Xiaorong, LI Shilin, LIU Bin. Control of high r esolution sequence str atigr aphy on microfacies and reservoir s: A case from the upper Ma 5 member in Tong 5 wellblock, Jingbian Gas Field[J]. Lithologic Reservoirs, 2008, 20(1): 1 -7 .
[3] YANG Jie,WEI Pingsheng, LI Xiangbo. Basic concept, content and research method of petroleum seismogeology[J]. Lithologic Reservoirs, 2010, 22(1): 1 -6 .
[4] WANG Yan-qi1,HU Min-yi1,LIU Fu-yan1,WANG Hui1,HU Zhi-hua1,2. [J]. LITHOLOGIC RESERVOIRS, 2008, 20(3): 44 -48 .
[5] DAI Liming, LI Jianping, ZHOU Xinhuai, CUI Zhongguo, CHENG Jianchun. Depositional system of the Neogene shallow water delta in Bohai Sea area[J]. Lithologic Reservoirs, 2007, 19(4): 75 -81 .
[6] DUAN Youxiang, CAO Jing, SUN Qifeng. Application of auto-adaptive dip-steering technique to fault recognition[J]. Lithologic Reservoirs, 2017, 29(4): 101 -107 .
[7] HUANG Long, TIAN Jingchun, XIAO Ling, WANG Feng. Characteristics and evaluation of Chang 6 sandstone reservoir of Upper Triassic in Fuxian area, Ordos Basin[J]. Lithologic Reservoirs, 2008, 20(1): 83 -88 .
[8] YANG Shiwei, LI Jianming. Characteristics and geological significance of seismites[J]. Lithologic Reservoirs, 2008, 20(1): 89 -94 .
[9] LI Chuanliang, TU Xingwan. Two types of stress sensitivity mechanisms for reservoir rocks:Being favorable for oil recovery[J]. Lithologic Reservoirs, 2008, 20(1): 111 -113 .
[10] LI Jun, HUANG Zhilong, LI Jia, LIU Bo. The pool-forming pattern in the condition of arching in the southeast uplift in Songliao Basin[J]. Lithologic Reservoirs, 2007, 19(1): 57 -61 .
TRENDMD: