Lithologic Reservoirs ›› 2021, Vol. 33 ›› Issue (2): 180-188.doi: 10.12108/yxyqc.20210219

• PETROLEUM ENGINEERING • Previous Articles    

Re-discussion on principle of constant porosity during primary deformation of rock

ZHU Suyang1, LI Dongmei2, LI Chuanliang1, LI Huihui2, LIU Xiongzhi3   

  1. 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610599, China;
    2. Completion and Well Test Management Center, Sinopec Northwest Oilfield Company, Luntai 841600, Xinjiang, China;
    3. PetroChina Research Institute of Petroleum Exploration & Development-Northwest, Lanzhou 730020, China
  • Received:2020-07-16 Revised:2020-09-03 Online:2021-04-01 Published:2021-03-31

Abstract: In the primary deformation of reservoir rocks,the assumption that the shape of the skeleton particles remains unchanged assumes that the porosity of the rocks remains unchanged during the compression process. However,the shape of the skeleton particles does not strictly remain unchanged. In order to study the influence of the shape change of skeleton particles on porosity,based on the elastic deformation model,finite element numerical simulation method was used to study the deformation of skeleton particles and its influence mechanism on porosity during the primary deformation of porous media. The results show that the displacement of skeleton particles is small in the constraint direction(particle contact position),and it is larger in the unconstrained direction (pore position),which changes the shape of the particles,reduces the porosity of rock. However,the young's modulus of rock minerals is larger,and the constraint conditions of the rock skeleton particles are more demanding than those in numerical experiments. Therefore,the effect of skeleton particle deformation on porosity is very weak. In the numerical experiments,rigid epidermis has only a certain effect on the initial porosity value. However,the flexible skin in the core gripper has a great influence on the measurement process,which is the direct cause of the great change of porosity in the experiment. Therefore,in the process of reservoir production, the deformation process of rock can still be considered to follow the "porosity invariance principle".

Key words: rock skeleton, porosity, primary deformation, constrained deformation, numerical simulation, skin effect

CLC Number: 

  • TE349
[1] ISCAN A G, KOK M V, BAGC A S. Estimation of permeability and rock mechanical properties of limestone reservoir rocks under stress conditions by strain gauge. Journal of Petroleum Science and Engineering, 2006, 53(1/2):13-24.
[2] 薛丹, 张遂安, 吴新民, 等.下寺湾油田长7油层组页岩气储层敏感性实验.岩性油气藏, 2019, 31(3):135-144. XUE D, ZHANG S A, WU X M, et al. Sensitivity experiment of shale gas reservoir of Chang 7 reservoir in Xiasiwan oilfield. Lithologic Reservoirs, 2019, 31(3):135-144.
[3] 毛小龙, 刘月田, 冯月丽, 等.双重有效应力再认识及其综合作用.石油科学通报, 2018, 3(4):390-398. MAO X L, LIU Y T, FENG Y L, et al. Re-recognition of dual effective stresses and the comprehensive effect. Petroleum Science Bulletin, 2018, 3(4):390-398.
[4] 李传亮.关于双重有效应力:回应洪亮博士.新疆石油地质, 2015, 36(2):238-243. LI C L. Discussion on the dual effective stresses of porous media:Reply to Dr Hong Liang. Xinjiang Petroleum Geology, 2015, 36(2):238-243.
[5] 王继伟, 朱玉双, 饶欣久, 等.鄂尔多斯盆地胡尖山地区长61致密砂岩储层成岩特征与孔隙度定量恢复. 岩性油气藏, 2020, 32(3):34-43. WANG J W, ZHU Y S, RAO X J, et al. Diagenetic characteristics and quantitative porosity restoration of Chang 61 tight sandstone reservoir in Hujianshan area, Ordos Basin. Lithologic Reservoirs, 2020, 32(3):34-43.
[6] 郭艳琴, 何子琼, 郭彬程, 等.苏里格气田东南部盒8段致密砂岩储层特征及评价.岩性油气藏, 2019, 31(5):1-11. GUO Y Q, HE Z Q, GUO B C, et al. Reservoir characteristics and evaluation of tight sandstone of He 8 member in southeastern Sulige Gas Field. Lithologic Reservoirs, 2019, 31(5):1-11.
[7] 邓浩阳, 司马立强, 吴玟, 等.致密砂岩储层孔隙结构分形研究与渗透率计算:以川西坳陷蓬莱镇组、沙溪庙组储层为例. 岩性油气藏, 2018, 30(6):76-82. DENG H Y, SIMA L Q, WU W, et al. Fractal characteristics of pore structure and permeability calculation for tight sandstone reservoirs:a case of Penglaizhen Formation and Shaximiao Formation in western Sichuan Depression. Lithologic Reservoirs, 2018, 30(6):76-82.
[8] 王维斌, 朱静, 马文忠, 等.鄂尔多斯盆地周家湾地区长8致密砂岩储层特征及影响因素.岩性油气藏, 2017, 29(1):51-58. WANG W B, ZHU J, MA W Z, et al. Characteristics and influencing factors of Chang 8 tight sandstone reservoir of Triassic Yanchang Formation in Zhoujiawan area,Ordos Basin. Lithologic Reservoirs, 2017, 29(1):51-58.
[9] 王猛, 曾明, 陈鸿傲, 等.储层致密化影响因素分析与有利成岩相带预测:以马岭油田长8油层组砂岩储层为例.岩性油气藏, 2017, 29(1):59-70. WANG M, ZENG M, CHEN H A, et al. Influencing factors of tight reservoirs and favorable diagenetic facies:a case study of Chang 8 reservoir of the Upper Triassic Yanchang Formation in Maling Oilfield, Ordos Basin. Lithologic Reservoirs, 2017, 29(1):59-70.
[10] 丁景辰, 杨胜来, 胡伟, 等.致密气藏应力敏感性实验.大庆石油地质与开发, 2014, 33(3):170-174. DING J C, YANG S L, HU W, et al. Indoor experiment in the stress sensitivity for tight gas reservoir. Petroleum Geology and Oilfield Development in Daqing, 2014, 33(3):170-174.
[11] 丁景辰, 杨胜来, 聂向荣, 等.致密气藏的应力敏感性及其对气井单井产能的影响. 西安石油大学学报(自然科学版),2014, 29(3):63-67. DING J C, YANG S L, NIE X R, et al. Stress sensitivity of tight gas reservoir and its influence on productivity of gas well. Journal of Xi'an Shiyou University(Natural Science Edition),2014, 29(3):63-67.
[12] 高树生, 熊伟.有效应力对低渗低孔介质孔渗参数的影响.辽宁工程技术大学学报(自然科学版), 2001, 20(4):538-540. GAO S S, XIONG W. The effect of effective stress on the parameter of the low permeability. Journal of Liaoning Technical University(Natural Science), 2001, 20(4):538-540.
[13] 杨通佑, 范尚炯, 陈元千, 等.石油及天然气储量计算方法.北京:石油工业出版社, 1990. YANG T Y, FAN S J, CHEN Y Q, et al. The computation method of oil and gas reserve. Beijing:Petroleum Industry press, 1990.
[14] 李传亮, 孔祥言, 徐献芝, 等.多孔介质的双重有效应力.自然杂志, 1999, 21(5):288-292. LI C L, KONG X Y, XU X Z, et al. Dual effective stress of porous media. Chinese Journal of Nature, 1999, 21(5):288-292.
[15] 李传亮, 朱苏阳.关于应力敏感测试方法的认识误区.岩性油气藏, 2015, 27(6):1-4. LI C L, ZHU S Y. Misunderstanding of measuring methods of stress sensibility. Lithologic Reservoirs, 2015, 27(6):1-4.
[16] 李传亮. 有效应力概念的误用. 天然气工业, 2008, 28(10):130-132. LI C L. Misusage of the concept of effective stress. Natural Gas Industry, 2008, 28(10):130-132.
[17] 李传亮.储层岩石的压缩问题.石油钻采工艺, 2010, 32(5):120-124. LI C L. Discussion on the compression of reservoir rock. Oil Drilling & Production Technology, 2010, 32(5):120-124.
[18] 李传亮, 涂兴万.储层岩石的2种应力敏感机制:应力敏感有利于驱油.岩性油气藏, 2008, 20(1):111-113. LI C L, TU X W. Two types of stress sensitivity mechanisms for reservoir rocks:Being favorable for oil recovery. Lithologic Reservoirs, 2008, 20(1):111-113.
[19] 李传亮.油藏工程原理.北京:石油工业出版社, 2011. LI C L. Fundamental of reservoir engineering. Beijing:Petroleum Industry Press, 2011.
[20] 李传亮.岩石本体变形过程中的孔隙度不变性原则:同任勇和孙艾茵二位作者商榷.新疆石油地质, 2005, 26(6):130-132. LI C L. The principle of rock porosity invariability in primary deformation. Xinjiang Petroleum Geology, 2005, 26(6):130-132.
[21] 李传亮.孔隙度校正缺乏理论依据.新疆石油地质, 2003, 24(3):254-256. LI C L. The porosity correction is lack of theoretical basis. Xinjiang Petroleum Geology, 2003, 24(3):254-256.
[22] JAEGER J C, COOK N G W, ZIMMERMAN R W. Fundamentals of rock mechanics. 4th ed. Blackwell Publishing, 2007.
[23] ZHU S Y. Experiment research of tight sandstone gas reservoir stress sensitivity based on the capillary bundle mode. SPE 167638, 2013.
[24] 李传亮. 岩石压缩系数测量新方法. 大庆石油地质与开发, 2008, 27(3):53-54. LI C L. A new measurement method of rock compressibility. Petroleum Geology and Oilfield Development in Daqing, 2008, 27(3):53-54.
[25] ZHU S Y, DU Z M, LI C L, et al. A semi-analytical model for pressure-dependent permeability of tight sandstone reservoirs. Transport in Porous Media, 2018, 122(2):1-18.
[26] MBIA E N, FABRICIUS I L, KROGSBØLL A, et al. Permeability,compressibility and porosity of Jurassic shale from the Norwegian-Danish Basin. Petroleum Geoscience, 2014, 20(3), 257-281.
[27] WU H B, DONG S H, LI D H, et al. Experimental study on dynamic elastic parameters of coal samples. International Journal of Mining Science and Technology, 2015, 25(3):447-452.
[28] GUO, X, YAO Y, LIU D. Characteristics of coal matrix compressibility:an investigation by mercury intrusion porosimetry. Energy & Fuels, 2014, 28(6):3673-3678.
[1] CUI Chuanzhi, LI Jing, WU Zhongwei. Simulation of microscopic seepage characteristics of CO2 immiscible flooding under the effect of diffusion and adsorption [J]. Lithologic Reservoirs, 2024, 36(6): 181-188.
[2] XIAO Boya. Characteristics and favorable zone distribution of tuff reservoirt of Cretaceous in A’nan sag,Erlian Basin [J]. Lithologic Reservoirs, 2024, 36(6): 135-148.
[3] CHEN Kang, DAI Juncheng, WEI Wei, LIU Weifang, YAN Yuanyuan, XI Cheng, LYU Yan, YANG Guangguang. Lithofacies classification of tight sandstone based on Bayesian Facies-AVO attributes:A case study of the first member of Jurassic Shaximiao Formation in central Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 111-121.
[4] LIU Renjing, LU Wenming. Mechanism and field practice of enhanced oil recovery by injection-production coupling in fault block reservoirs [J]. Lithologic Reservoirs, 2024, 36(3): 180-188.
[5] ZHANG Wenbo, LI Ya, YANG Tian, PENG Siqiao, CAI Laixing, REN Qiqiang. Characteristics and diagenetic evolution of Permian pyroclastic reservoirs in Jianyang area,Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(2): 136-146.
[6] BAO Hanyong, LIU Chao, GAN Yuqing, XUE Meng, LIU Shiqiang, ZENG Lianbo, MA Shijie, LUO Liang. Paleotectonic stress field and fracture characteristics of shales of Ordovician Wufeng Formation to Silurian Longmaxi Formation in southern Fuling area,Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(1): 14-22.
[7] LUO Beiwei, YIN Jiquan, HU Guangcheng, CHEN Hua, KANG Jingcheng, XIAO Meng, ZHU Qiuying, DUAN Haigang. Characteristics and controlling factors of high porosity and permeability limestone reservoirs of Cretaceous Cenomanian in the western United Arab Emirates [J]. Lithologic Reservoirs, 2023, 35(6): 63-71.
[8] LI Fengfeng, NI Xiaowei, XU Sihui, WEI Xinlu, LIU Diren. Response characteristics and correction of LWD laterolog in anisotropic formations and deviated boreholes [J]. Lithologic Reservoirs, 2023, 35(3): 161-168.
[9] XIA Qingsong, LU Jiang, YANG Peng, ZHANG Kun, YANG Chaoyi, NIE Junjie, ZHU Yunfang, LI Lifang. Microscopic pore structure characteristics of the upper member of Oligocene Xiaganchaigou Formation in Yingxi area, Qaidam Basin [J]. Lithologic Reservoirs, 2023, 35(1): 132-144.
[10] Lü Dongliang, YANG Jian, LIN Liming, ZHANG Kaili, CHEN Yanhu. Characterization model of oil-water relative permeability curves of sandstone reservoir and its application in numerical simulation [J]. Lithologic Reservoirs, 2023, 35(1): 145-159.
[11] ZHOU Hongfei, DAI Xin, JIA Min, ZHANG Rui, LI Guohui, LI Nan, YANG Qiang, BAI Rong. Hydrocarbon accumulation characteristics of the second member of Sinian Dengying Formation in the north slope of central Sichuan paleo-uplift [J]. Lithologic Reservoirs, 2022, 34(5): 130-138.
[12] WANG Maozhen, WU Kui, GUO Tao, HUI Guanzhou, HAO Yiwei. Reservoir characteristics and controlling factors of the second member of Paleogene Shahejie Formation in southeastern margin of Liaodong Sag [J]. Lithologic Reservoirs, 2022, 34(4): 66-78.
[13] ZHANG Wei, LI Lei, QIU Xinwei, GONG Guangchuan, CHENG Linyan, GAO Yifan, YANG Zhipeng, YANG Lei. A/S control on spatiotemporal evolution of deltas in rifted lacustrine basin and its numerical simulation: A case study of Paleogene Wenchang Formation in Lufeng 22 subsag,Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2022, 34(3): 131-141.
[14] DONG Min, GUO Wei, ZHANG Linyan, WU Zhonghai, MA Licheng, DONG Hui, FENG Xingqiang, YANG Yuehui. Characteristics of paleotectonic stress field and fractures of WufengLongmaxi Formation in Luzhou area, southern Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(1): 43-51.
[15] ZHANG Yuye, GAO Jianwu, ZHAO Jingzhou, ZHANG Heng, WU Heyuan, HAN Zaihua, MAO Zhaorui, YANG Xiao. Diagenesis and pore evolution of Chang 6 tight sandstone reservoir in southeastern Ordos Basin [J]. Lithologic Reservoirs, 2021, 33(6): 29-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] PANG Xiongqi,CHEN Dongxia, ZHANG Jun. Concept and categorize of subtle reservoir and problems in its application[J]. Lithologic Reservoirs, 2007, 19(1): 1 -8 .
[2] LEI Bianjun, ZHANG Ji,WANG Caili,WANG Xiaorong, LI Shilin, LIU Bin. Control of high r esolution sequence str atigr aphy on microfacies and reservoir s: A case from the upper Ma 5 member in Tong 5 wellblock, Jingbian Gas Field[J]. Lithologic Reservoirs, 2008, 20(1): 1 -7 .
[3] YANG Jie,WEI Pingsheng, LI Xiangbo. Basic concept, content and research method of petroleum seismogeology[J]. Lithologic Reservoirs, 2010, 22(1): 1 -6 .
[4] WANG Yan-qi1,HU Min-yi1,LIU Fu-yan1,WANG Hui1,HU Zhi-hua1,2. [J]. LITHOLOGIC RESERVOIRS, 2008, 20(3): 44 -48 .
[5] DAI Liming, LI Jianping, ZHOU Xinhuai, CUI Zhongguo, CHENG Jianchun. Depositional system of the Neogene shallow water delta in Bohai Sea area[J]. Lithologic Reservoirs, 2007, 19(4): 75 -81 .
[6] DUAN Youxiang, CAO Jing, SUN Qifeng. Application of auto-adaptive dip-steering technique to fault recognition[J]. Lithologic Reservoirs, 2017, 29(4): 101 -107 .
[7] HUANG Long, TIAN Jingchun, XIAO Ling, WANG Feng. Characteristics and evaluation of Chang 6 sandstone reservoir of Upper Triassic in Fuxian area, Ordos Basin[J]. Lithologic Reservoirs, 2008, 20(1): 83 -88 .
[8] YANG Shiwei, LI Jianming. Characteristics and geological significance of seismites[J]. Lithologic Reservoirs, 2008, 20(1): 89 -94 .
[9] LI Chuanliang, TU Xingwan. Two types of stress sensitivity mechanisms for reservoir rocks:Being favorable for oil recovery[J]. Lithologic Reservoirs, 2008, 20(1): 111 -113 .
[10] LI Jun, HUANG Zhilong, LI Jia, LIU Bo. The pool-forming pattern in the condition of arching in the southeast uplift in Songliao Basin[J]. Lithologic Reservoirs, 2007, 19(1): 57 -61 .
TRENDMD: