Lithologic Reservoirs ›› 2023, Vol. 35 ›› Issue (3): 161-168.doi: 10.12108/yxyqc.20230314

• PETROL EUM ENGINEERING AND OIL & GAS FIELD DEVEL OPMENT • Previous Articles    

Response characteristics and correction of LWD laterolog in anisotropic formations and deviated boreholes

LI Fengfeng1, NI Xiaowei2, XU Sihui2, WEI Xinlu3, LIU Diren1   

  1. 1. Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Wuhan 430100, China;
    2. Production Capacity Construction Division, PetroChina Tarim Oilfield Company, Korla 841000, Xinjiang, China;
    3. Liaohe Branch of CNPC Logging Corporation, Panjin 124000, Liaoning, China
  • Received:2022-08-15 Revised:2022-09-05 Published:2023-04-25

Abstract: The finite element numerical simulation method and parameter sensitivity function were used to simulate the response characteristics of toroidal coil excitation LWD laterolog instrument in anisotropic formation and deviated boreholes,the sensitivity of the instrument to the formation thickness/surrounding rock,anisotropy and well deviation angle were analyzed,and based on forward modeling results segment fitting,a calculation method for rapid correction of well deviation/anisotropy was proposed for different well deviation angles. The results show that:(1)When the thickness of the target layer is less than 0.5 m,the instrument response is seriously affected by the surrounding rocks. When the thickness is 0.5-5.0 m,the instrument response is affected by both the surrounding rock and anisotropy. When the thickness is greater than 5.0 m,the influence of anisotropy on the instrument response is dominant.(2)When the well deviation angle is less than 30 °,the logging response is less affected by the anisotropy coefficient,and the maximum difference of apparent resistivity is 2.5 Ω·m. When the well deviation angle is greater than 30 °,the instrument response is seriously affected by anisotropy and cannot reflect the horizontal resistivity of the formation.(3)This method has better correction effects in conductive formation and resistive formation with larger thickness.

Key words: deviated boreholes, anisotropy, LWD laterolog, investigation depth, resolution, sensitivity, finite element numerical simulation

CLC Number: 

  • TE353
[1] 林剑松,李盛清,刘忠华,等随钻划眼采集模式的过套管声波测井数值模拟与实验研究[J].地球物理学进展, 2021, 36(6):2496-2502. LIN Jiansong, LI Shengqing, LIU Zhonghua, et al. Numerical simulation and experimental research of through casing sonic logging with redressing LWD acquisition mode[J]. Progress in Geophysics, 2021, 36(6):2496-2502.
[2] 宋殿光,岳步江,狄帮让,等.近钻头电阻率测量理论及响应模拟[J].测井技术, 2019, 43(6):564-568. SONG Dianguang, YUE Bujiang, DI Bangrang, et al. Theory and response simulation of near-bit resistivity[J]. Well Logging Technology, 2019, 43(6):564-568.
[3] 许泽瑞,汪忠浩,王昌学,等.随钻电阻率测井响应分析与应用[J].岩性油气藏, 2012, 24(3):93-98. XU Zerui,WANG Zhonghao,WANG Changxue,et al. Response characteristics of LWD resistivity logging and its application[J]. Lithologic Reservoirs, 2012, 24(3):93-98.
[4] 杨震,杨锦舟,韩来聚,等.随钻方位电磁波界面探测性能分析[J].石油学报, 2016, 37(7):930-938. YANG Zhen, YANG Jinzhou, HAN Laiju, et al. Interface detection performance analysis of azimuthal electromagnetic while drilling[J]. Acta Petrolei Sinica, 2016, 37(7):930-938.
[5] 孙宏博,倪卫宁,李新,等.基于C4D技术的油基钻井液随钻侧向电阻率测井信号检测[J].中南大学学报(自然科学版), 2018, 49(5):1281-1288. SUN Hongbo, NI Weining, LI Xin, et al. Signal detection of lateral resistivity LWD based on C4D technique with oil-based drilling fluid[J]. Journal of Central South University (Science and Technology), 2018, 49(5):1281-1288.
[6] 张向林,刘新茹.裸眼井测井新技术进展[J].岩性油气藏, 2008, 20(2):91-96. ZHANG Xianglin, LIU Xinru. New development of logging techniques in open hole[J]. Lithologic Reservoirs, 2008, 20(2):91-96.
[7] 唐海全.随钻方位伽马数据成像处理方法[J].岩性油气藏, 2017, 29(1):110-115. TANG Haiquan. Image processing method of LWD azimuthal gamma data[J]. Lithologic Reservoirs, 2017, 29(1):110-115.
[8] 胡松,郭洪波,王昌学,等.水平井随钻电阻率与双侧向响应差异影响因素分析[J].地球物理学进展, 2017, 32(5):1999-2008. HU Song, GUO Hongbo, WANG Changxue, et al. Influence factors analysis of response characteristics difference between dual laterolog resistivity and LWD resistivity in horizontal well[J]. Progress in Geophysics, 2017, 32(5):1999-2008.
[9] 司兆伟,邓少贵,林发武,等.泥浆侵入各向异性地层阵列侧向测井响应数值模拟[J].石油地球物理勘探, 2020, 55(1):187-196. SI Zhaowei, DENG Shaogui, LIN Fawu, et al. Numerical simulation of array laterolog responses in anisotropic formation with mud inversion[J]. Oil Geophysical Prospecting, 2020, 55(1):187-196.
[10] 胡松,王敏,刘伟男.页岩水平井声波时差各向异性校正方法及其应用[J].石油学报, 2022, 43(1):58-66. HU Song, WANG Min, LIU Weinan. Anisotropy correction method for acoustic time difference in horizontal shale wells and its application[J]. Acta Petrolei Sinica, 2022, 43(1):58-66.
[11] 范宜仁,巫振观,王磊,等.大斜度井各向异性地层双感应测井响应特征研究[J].测井技术, 2016, 40(3):262-269. FAN Yiren, WU Zhenguan, WANG Lei, et al. Response characteristics of dual induction logging in anisotropic formation and high deviated wells[J]. Well Logging Technology, 2016, 40(3):262-269.
[12] 倪小威,徐观佑,冯加明,等.斜井中各向异性储层阵列侧向测井正演响应特性[J].断块油气田, 2017, 24(5):637-641. NI Xiaowei, XU Guanyou, FENG Jiaming, et al. Forward response of array lateral logging in anisotropic reservoir of inclined shaft[J]. Fault-Block Oil&Gas Field, 2017, 24(5):637-641.
[13] ARPS J J. Inductive resistivity guard logging apparatus including toroidal coils mounted on a conductive stem:US, US3305771[P]. 1967-02-21.
[14] GIANZERO S, CHEMALI R, LIN Y, et al. A new resistivity tool for measurement-while-drilling[R]. SPWLA-1985-A, 1985.
[15] ORTENZI L, DUBOURG I, VAN O S R, et al. New azimuthal resistivity and high-resolution imager facilitates formation evaluation and well placement of horizontal slim boreholes[J]. Petrophysics, 2011, 53(3):197-207.
[16] 康正明,柯式镇,李新,等.基于随钻电阻率成像测井仪的洞穴评价模型理论研究[J].中南大学学报(自然科学版), 2021, 52(5):1542-1551. KANG Zhengming, KE Shizhen, LI Xin, et al. Theoretical study on cave evaluation model based on LWD resistivity imaging tool[J]. Journal of Central South University (Science and Technology), 2021, 52(5):1542-1551.
[17] PRAMMER M G, MORYS M, KNIZHNIK S, et al. A high-resolution LWD resistivity imaging tool-field testing in vertical and highly deviated boreholes[J]. Petrophysics, 2009, 50(1):49-66.
[18] KANG Zhengming, KE Shizhen, LI Xin, et al. 3D FEM simulation of responses of LWD multi-mode resistivity imaging sonde. Appl[J]. Geophysics, 2018, 15:401-412.
[19] 李铭宇,柯式镇,康正明,等.螺绕环激励式随钻侧向测井仪测量强度影响因素及响应特性[J].石油钻探技术, 2018, 46(1):128-134. LI Mingyu, KE Shizhen, KANG Zhengming, et al. Influence factors of measured signal intensity and the response characteristics of the toroidal coil excitation LWD laterolog instrument[J]. Petroleum Drilling Techniques, 2018, 46(1):128-134.
[20] 张庚骥.电法测井[M].北京:石油工业出版社, 1984:40-42. ZHANG Gengji. Electrical logging[M]. Beijing:Petroleum Industry Press, 1984:40-42.
[21] 刘迪仁,夏培,万文春,等.水平井碳酸盐岩裂缝型储层双侧向测井响应特性[J].岩性油气藏, 2012, 24(3):1-4. LIU Diren, XIA Pei, WAN Wenchun, et al. Characteristics of dual laterolog response of carbonate fracture reservoirs in horizontal well[J]. Lithologic Reservoirs, 2012, 24(3):1-4.
[22] 张盼,邓少贵,胡旭飞,等.超深随钻方位电磁波测井探测特性及参数敏感性分析[J].地球物理学报, 2021, 64(6):2210-2219. ZHANG Pan, DENG Shaogui, HU Xufei, et al. Detection performance and sensitivity of logging-while-drilling extra-deep azimuthal resistivity measurement[J]. Chinese Journal of Geophysics, 2021, 64(6):2210-2219.
[23] 邓少贵,蔡联云,王磊,等.基于电阻率敏感性函数的随钻电磁波测井探测特性研究[J].地球物理学报, 2020, 63(5):2096-2106. DENG Shaogui, CAI Lianyun, WANG Lei, et al. Research on detection characteristics of electromagnetic logging while drilling based on resistivity sensitivity function[J]. Chinese Journal of Geophysics, 2020, 63(5):2096-2106.
[24] 王贵清,袁雪花,苏沛强,等.井斜角对测量电阻率的影响及其校正方法[J].测井技术, 2021, 45(5):470-474. WANG Guiqing, YUAN Xuehua, SU Peiqiang, et al. Influence of deviation angle to the measuring resistivity and its correction method[J]. Well Logging Technology, 2021, 45(5):470-474.
[1] YAO Xiutian, WANG Chao, YAN Sen, WANG Mingpeng, LI Wan. Reservoir sensitivity of Neogene Guantao Formation in Zhanhua Sag, Bohai Bay Basin [J]. Lithologic Reservoirs, 2023, 35(2): 159-168.
[2] ZHANG Yan, HOU Lianhua, CUI Jingwei, LUO Xia, LIN Senhu, ZHANG Ziyun. Evolution characteristics of thermal expansion coefficient of rocks with temperature of Triassic Chang 7 organic-rich reservoir and its implications in Ordos Basin [J]. Lithologic Reservoirs, 2022, 34(4): 32-41.
[3] ZHAO Yan, MAO Ningbo, CHEN Xu. Self-adaptive gain-limit inverse Q filtering method based on SNR in time-frequency domain [J]. Lithologic Reservoirs, 2021, 33(4): 85-92.
[4] KONG Chuixian, BA Zhongchen, CUI Zhisong, HUA Meirui, LIU Yuetian, MA Jing. Stress-sensitive productivity model of fractured horizontal wells in volcanic reservoirs [J]. Lithologic Reservoirs, 2021, 33(4): 166-175.
[5] LIU Huan, SU Qin, ZENG Huahui, MENG Huijie, ZHANG Xiaomei, YONG Yundong. Application of near-surface Q compensation technology in tight gas exploration in central Sichuan Basin [J]. Lithologic Reservoirs, 2021, 33(3): 104-112.
[6] DIAO Rui. Monitoring and evaluation technology for high resolution processing of seismic data [J]. Lithologic Reservoirs, 2020, 32(1): 94-101.
[7] WANG Yuepeng, LIU Xiangjun, LIANG Lixi. Anisotropy and energy evolution characteristics of Zhangjiatan continental shale of Yanchang Formation in Ordos Basin [J]. Lithologic Reservoirs, 2019, 31(5): 149-160.
[8] JIANG Ruizhong, ZHANG Fulei, CUI Yongzheng, PAN Hong, ZHANG Xu, ZHANG Chunguang, SHEN Zeyang. Pressure dynamic analysis of shale gas reservoirs considering stress sensitivity and complex migration [J]. Lithologic Reservoirs, 2019, 31(4): 149-156.
[9] JI Jinghao, XI Jiahui, ZENG Fenghuang, YANG Qigui. Unsteady productivity model of segmented multi-cluster fractured horizontal wells in tight oil reservoir [J]. Lithologic Reservoirs, 2019, 31(4): 157-164.
[10] XIONG Shan, WANG Xuesheng, ZHANG Sui, ZHAO Tao, PANG Fei, GAO Lei. Physical properties variation of WXS reservoir after long-term water flooding [J]. Lithologic Reservoirs, 2019, 31(3): 120-129.
[11] XUE Dan, ZHANG Sui'an, WU Xinmin, LI Xuhang, DU Junjun, LU Chengang. Sensitivity experiment of shale gas reservoir of Chang 7 reservoir in Xiasiwan oilfield [J]. Lithologic Reservoirs, 2019, 31(3): 135-144.
[12] RUI Zhifeng, LIN Changsong, DU Jiayuan, DING Lin, LI Xiao. Key sequence surfaces identification and its significance in the exploration of lithologic reservoirs: a case of Zhujiang Formation in Huizhou Depression [J]. Lithologic Reservoirs, 2019, 31(1): 96-105.
[13] JIANG Ruizhong, SHEN Zeyang, CUI Yongzheng, ZHANG Fulei, ZHANG Chunguang, YUAN Jianwei. Dynamical characteristics of inclined well in dual medium low permeability reservoir [J]. Lithologic Reservoirs, 2018, 30(6): 131-137.
[14] REN Dazhong, ZHANG Hui, ZHOU Ran, WANG Qian, HUANG Hai, TANG Shenglan, JIN Na. Sensitivity of tight sandstone reservoir of Bashijiqike Formation in Keshen area, Tarim Basin [J]. Lithologic Reservoirs, 2018, 30(6): 27-36.
[15] YANG Ying, YANG Wei, ZHU Shijun. Method for high-resolution sequence stratigraphy division based on Ensemble Empirical Mode Decomposition [J]. Lithologic Reservoirs, 2018, 30(5): 59-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HAO Lewei, WANG Qi, TANG Jun. Research progress of reservoir microscopic pore structure[J]. Lithologic Reservoirs, 2013, 25(5): 123 -128 .
[2] HE Jianhua,DING Wenlong,FU Jinglong,LI Ang,DAI Peng. Study on genetic type of micropore in shale reservoir[J]. Lithologic Reservoirs, 2014, 26(5): 30 -35 .
[3] XIANG Xuebing, SIMA Liqiang, WANG Liang, LI Jun, GUO Yuhao, ZHANG Hao. Pore fluid division and effective pore size calculation of shale gas reservoir: A case study of Longtan Formation in Sichuan Basin[J]. Lithologic Reservoirs, 2021, 33(4): 137 -146 .
[4] HU Hewei, LI Huiyong, XU Peng, TAO Li, HUA Xiaoli. Main controlling factors of differential enrichment of oil and gas in fault concentrated zones: a case study from Qinan step-fault zone in Qikou Sag[J]. Lithologic Reservoirs, 2020, 32(5): 34 -45 .
[5] YU Yan, ZHOU Linlang, GAN Xiaofei, HU Yan, GAN Wenjin, DENG Zhuang. A triple-porosity flow model and its nonlinear flow characteristics with considering quadratic pressure gradient[J]. Lithologic Reservoirs, 2020, 32(5): 143 -150 .
[6] LI Mengying, ZHU Rukai, HU Suyun. Geological characteristics and resource potential of overseas terrestrial shale oil[J]. Lithologic Reservoirs, 2022, 34(1): 163 -174 .
[7] ZHANG Jigang, DU Meng, CHEN Chao, QIN Ming, JIA Ninghong, LYU Weifeng, DING Zhenhua, XIANG Yong. Quantitative characterization of pore structure of shale reservoirs of Permian Lucaogou Formation in Jimsar Sag[J]. Lithologic Reservoirs, 2022, 34(4): 89 -102 .
[8] WANG Jiangong, LI Jiangtao, LI Xiang, GAO Yanfang, ZHANG Ping, SUN Xiujian, BAI Yadong, ZUO Mingtao. Differences and controlling factors of lithofacies assemblages of Cenozoic lacustrine microbial carbonate rocks in western Qaidam Basin[J]. Lithologic Reservoirs, 2023, 35(3): 1 -17 .
[9] ZHANG Zhenhua, ZHANG Xiaojun, ZHONG Dakang, GOU Yingchun, ZHANG Shiming. Reservoir characteristics and main controlling factors of upper member of Paleogene Xiaganchaigou Formation in Nanyishan area, northwestern Qaidam Basin[J]. Lithologic Reservoirs, 2023, 35(3): 29 -39 .
[10] BAI Yang, ZHANG Xiaolei, GANG Wenzhe, ZHANG Zhongyi, YANG Shangru, PANG Jinlian, CAO Jingjing, HOU Yunchao. Characteristics and genesis of Upper Triassic Chang 8 reservoir with low oil saturation in northern Pingliang area, Ordos Basin[J]. Lithologic Reservoirs, 2023, 35(3): 66 -75 .
TRENDMD: