Lithologic Reservoirs ›› 2024, Vol. 36 ›› Issue (6): 1-11.doi: 10.12108/yxyqc.20240601

• NEW ENERGY AND ASSOCIATED RESOURCES • Previous Articles     Next Articles

Origins and accumulation characteristics of large-scale generation of natural hydrogen

YIN Lu, LI Bo, QI Wen, SUN Dong, YUE Xingfu, MA Hui   

  1. PetroChina Research Institute of Petroleum Exploration and Development-Northwest, Lanzhou 730020, China
  • Received:2024-09-29 Revised:2024-10-09 Online:2024-11-01 Published:2024-11-04

Abstract: At present,the estimation of global natural hydrogen resources is enormous,and the understanding of its formation mechanism and enrichment rules is helpful for searching for large-scale accumulation areas of natural hydrogen. Through the statistical analysis of typical natural hydrogen displays both domestically and internation ally,the origin types of large-scale accumulation of global natural hydrogen gas were summarized,and the distri bution and accumulation characteristics of natural hydrogen gas reservoirs were analyzed. The results show that: (1)The origin of natural hydrogen is complex,mainly including water-rock reactions,degassing of deep-seated hydrogen from the mantle,water radiolysis,rock fragmentation,decomposition of organic matter,and biological activity. Among them,hydrogen generation through water-rock reactions and degassing of deep-seated hydrogen from the mantle are commonly occurring in nature,and widely present in various geological environments,with high hydrogen generation rates and large amounts. Therefore,they are the two most important origin types for the large-scale generation of natural hydrogen.(2)The natural hydrogen gas reservoirs are mainly developed in three geological backgrounds:plate subduction zones,pre-Cambrian iron-rich strata development areas,and rift tectonic systems.(3)The sealing conditions of natural hydrogen reservoirs are affacted by multiple factors,including not only the sealing ability of the cap rocks,but also the changes in the mechanical properties of the cap rocks caused by the active physical and chemical properties of hydrogen,which affect its brittleness-toughness and form fractures,resulting in the escape of hydrogen.(4)Metabolic activities of underground microorganisms by hydrogen,and hydrocarbon generation in the middle and deep layers are not conducive to the large-scale accumu lation of hydrogen. Therefore,when searching for favorable areas for natural hydrogen generation,areas where hydrogen is consumed in large quantities should be avoided.(5)Due to factors such as the short time of natural hydrogen generation and its diffusion,the accumulation of natural hydrogen shows dynamic characteristics. When hydrogen generation and escape are in a dynamic equilibrium,it can be enriched to accumulate. Groundwater is a necessary condition for hydrogen generation through water-rock reactions,and many natural hydrogen reservoirs discovered abroad are distributed in areas with good groundwater circulation.

Key words: natural hydrogen, water-rock reactions, degassing of deep-seated hydrogen from the mantle, plate subduction zones, Pre-Cambrian banded iron formations(BIFs), rift tectonic system, large-scale generation, accumulation characteristics

CLC Number: 

  • TE122.2
[1] 氢能:双碳目标下的“终极能源”[EB/OL].(2022-06-04) [2024-08-30]. https://www.sohu.com/a/553944682_777213. Hydrogen energy:The “ultimate energy”under the carbon peak ing and carbon neutrality goals[EB/OL].(2022-06-04)[2024- 08-30]. https:www.sohu.com/a/553944682_777213.
[2] 全球天然氢矿藏争夺战“升温”[EB/OL].(2024-05-07) [2024-08-30]. https:h2.in-en.com/html/h2-2435954.shtml. The competition for global natural hydrogen deposits continued heating up[EB/OL].(2024-05-07)[2024-08-30]. https://h2.inen.com/html/h2-2435954.shtml.
[3] 《科学》2023十大突破:万亿级“白氢”热潮风靡全球[EB/OL]. (2023-12-25)[2024-09-02]. https://www. thepaper. cn/news Detail_forward_25780637. Top ten breakthroughs of Science in 2023:Trillion level “white hydrogen”wave sweeps the world[EB/OL].(2023-12- 25)[2024-09-02]. https://www. thepaper. cn/newsDetail_for ward_25780637.
[4] 澳大利亚频现天然氢,中国也开启寻找,重点区域在哪[EB/ OL].(2024-06-07)[2024-09-10]. https://finance.sina.com.cn/ cj/2024-06-07/doc-inaxxupq3793924.shtml. Natural hydrogen frequently appears in Australia,China has also started searching,where are the key areas[EB/OL]. (2024-06-07)[2024-09-10]. https://finance. sina. com. cn/cj/ 2024-06-07/doc-inaxxupq3793924.shtml.
[5] 窦立荣,刘化清,李博,等. 全球天然氢气勘探开发利用进展及中国的勘探前景[J]. 岩性油气藏,2024,36(2):1-14. DOU Lirong,LIU Huaqing,LI Bo,et al. Global natural hydro gen exploration and development situation and prospects in China[J]. Lithologic Reservoirs,2024,36(2):1-14.
[6] JIN Zhijun,ZHANG Panpan,LIU Runchao,et al. Discovery of anomalous hydrogen leakage sites in the Sanshui Basin,South China[J]. Science Bulletin,2024,69(9):1217-1220.
[7] 孙龙德,冯子辉,江航,等. 松辽盆地富氢天然气地质调查与研究[J]. 大庆石油地质与开发,2024,43(3):7-16. SUN Longde,FENG Zihui,JIANG Hang,et al. Geological sur vey and study of hydrogen-rich natural gas in Songliao Basin [J]. Petroleum Geology & Oilfield Development in Daqing, 2024,43(3):7-16.
[8] LOLLAR B S,ONSTOTT T C,LACRAMPE-COULOUME G,et al. The contribution of the Precambrian continental litho sphere to global H2 production[J]. Nature,2014,516(7531): 379-382.
[9] SHUAI Yanhua,ZHANG Shuichang,SUAiguo,et al. Geo chemi cal evidence for strong ongoing methanogenesis in Sanhu region of Qaidam Basin[J]. Science China:Earth Sciences,2010,53(1):84-90.
[10] HAN Shuangbiao,TANG Zhiyuan,WANG Chengshan,et al. Hydrogen-rich gas discovery in continental scientific drilling project of Songliao Basin,Northeast China:New insights into deep Earth exploration[J]. Science Bulletin,2022,67(10): 1003-1006.
[11] 林良彪,蔺宏斌,侯明才,等. 鄂尔多斯盆地苏里格气田上古生界天然气地球化学及成藏特征[J]. 沉积与特提斯地质, 2009,29(2):77-82. LIN Liangbiao,LIN Hongbin,HOU Mingcai,et al. Geochemis try and accumulation of the Upper Palaeozoic natural gas in the Sulige gas field,Ordos Basin[J]. Sedimentary Geology and Teth yan Geology,2009,29(2):77-82.
[12] 张水昌,朱光有,陈建平,等. 四川盆地川东北部飞仙关组高含硫化氢大型气田群气源探讨[J]. 科学通报,2007,52(增刊1):86-94. ZHANG Shuichang,ZHU Guangyou,CHEN Jianping,et al. The discussion on gas source of gas field group with high H2S content in Feixianguan formation,northeastern Sichuan Basin [J]. Chinese Science Bulletin,2007,52(Suppl 1):86-94.
[13] 余川. 川东南地区下志留统页岩气成藏条件及资源潜力分析[D]. 成都:西南石油大学,2012. YU Chuan. Analysis on accumulation conditions and resource potential of lower Silurian shale gas in southeastern Sichuan [D].Chengdu:Southwest Petroleum University,2012.
[14] HAO Yinlei,PANG Zhonghe,TIAN Jiao,et al. Origin and evo lution of hydrogen-rich gas discharges from a hot spring in the eastern coastal area of China[J]. Chemical Geology,2020, 538:119477.
[15] 金之钧,杨雷,曾溅辉,等. 东营凹陷深部流体活动及其生烃效应初探[J].石油勘探与开发,2002,29(2):42-44. JIN Zhijun,YANG Lei,ZENG Jianhui,et al. Deep fluid activi ties and their effects on generation of hydrocarbon in Dongying Depression[J]. Petroleum Exploration and Development,2002, 29(2):42-44.
[16] 高清武. 长白山天池火山水热活动及气体释放特征[J]. 地球学报,2004,25(3):345-350. GAO Qingwu. Volcanic hydrothermal activities and gas-releas ing characteristics of the Tianchi Lake Region,Chanbai Moun tains[J]. Acta Geoscientica Sinica,2004,25(3):345-350.
[17] 上官志冠,白春华,孙明良. 腾冲热海地区现代幔源岩浆气体释放特征[J]. 中国科学:(D辑),2000,30(4):407-414. SHANGGUAN Zhiguan,BAI Chunhua,SUN Mingliang. Mod ern mantle-derived magma gas release characteristics in the Rehai area of Tengchong[J]. Science in China(Series D),2000, 30(4):407-414.
[18] 李秀梅,刘映辉,温景萍. 楚雄盆地乌龙1井天然气的地球化学特征和地质意义[J]. 天然气工业,2002,22(5):16-19. LI Xiumei,LIU Yinghui,WEN Jingping. Geochemical charac teristics of the natural gas from well Wulong-1,Chuxiong ba sin,and its geological significance[J]. Natural Gas Industry, 2002,22(5):16-19.
[19] 秦川,余谦,刘伟,等. 黔北地区牛蹄塘组富有机质泥岩储层特征[J]. 西南石油大学学报(自然科学版),2017,39(4):13-24. QIN Chuan,YU Qian,LIU Wei,et al. Reservoir characteristics of organic-rich mudstone of Niutitang Formation in northern Guizhou[J]. Journal of Southwest Petroleum University(Sci ence & Technology Edition),2017,39(4):13-24.
[20] KLEIN F,TARNAS J D,BACH W. Abiotic sources of molecu lar hydrogen on earth[J]. Elements,2020,16(1):19-24.
[21] ZGONNIK V. The occurrence and geoscience of natural hydro gen:A comprehensive review[J]. Earth-Science Reviews,2020, 203:103140.
[22] MILKOV A V. Molecular hydrogen in surface and subsurface natural gases:Abundance,origins and ideas for deliberate ex ploration[J]. Earth-Science Reviews,2022,230:104063.
[23] HAN Shuangbiao,XIANG Chaohan,DU Xin,et al. Geochem istry and origins of hydrogen-containing natural gases in deep Songliao Basin,China:Insights from continental scientific drill ing[J]. Petroleum Science,2023,21(2):741-751.
[24] HOSGÖRMEZ H,ETIOPE G,YALCIN M N. New evidence for a mixed inorganic and organic origin of the Olympic Chi maera fire(Turkey):A large onshore seepage of abiogenic gas [J]. Geofluids,2008,8(4):263-273.
[25] TEMPLETON A S,ELLISON E T,KELEMEN P B,et al. Lowtemperature hydrogen production and consumption in partiallyhydrated peridotites in Oman:Implications for stimulated geo logical hydrogen production[J]. Frontiers in Geochemistry, 2024,2:1366268.
[26] 徐义刚,何斌,罗震宇,等. 我国大火成岩省和地幔柱研究进展与展望[J]. 矿物岩石地球化学通报,2013,32(1):25-39. XU Yigang,HE Bin,LUO Zhenyu,et al. Study on mantle plume and large igneous provinces in China:An overview and perspectives[J]. Bulletin of Mineralogy,Petrology and Geo chemistry,2013,32(1):25-39.
[27] GUÉLARD J,BEAUMONT V,ROUCHON V,et al. Natural H 2 in Kansas:Deep or shallow origin[J]. Geochemistry,Geo physics,Geosystems,2017,18(5):1841-1865.
[28] HOSGÖRMEZ H. Origin of the natural gas seep of Çirali(Chi mera),Turkey:Site of the first Olympic fire[J]. Journal of Asian Earth Sciences,2007,30(1):131-141.
[29] ABRAJANO T A,STURCHIO N C,BOHLKE J K,et al. Methane-hydrogen gas seeps,Zambales Ophiolite,Philippines: Deep or shallow origin[J]. Chemical Geology,1988,71(1/2/ 3):211-222.
[30] BOULART C,CHAVAGNAC V,MONNIN C,et al. Differ ences in gas venting from ultramafic-hosted warm springs:The example of Oman and Voltri ophiolites[J]. Ofioliti,2013,38(2):143-156.
[31] PREINER M,XAVIER J,SOUSA F,et al. Serpentinization: Connecting geochemistry,ancient metabolism and industrial hydrogenation[J]. Life(Basel),2018,8(4):41.
[32] MILLER H M,MAYHEW L E,ELLISON E T,et al. Low tem perature hydrogen production during experimental hydration of partially-serpentinized dunite[J]. Geochimica et Cosmochi mica Acta,2017,209:161-183.
[33] 黄瑞芳,孙卫东,丁兴,等. 橄榄岩蛇纹石化过程中氢气和烷烃的形成[J]. 岩石学报,2015,31(7):1901-1907. HUANG Ruifang,SUN Weidong,DING Xing,et al. Formation of hydrogen gas and alkane during peridotite serpentinization [J]. Acta Petrologica Sinica,2015,31(7):1901-1907.
[34] MCCOLLOM T M,SEEWALD J S. Serpentinites,hydrogen, and life[J]. Elements,2013,9(2):129-134.
[35] 宋晗. 低温蛇纹岩化过程中Fe(OH)2相转变产H2的机制研究[D]. 广州:华南理工大学,2022. SONG Han. Mechanism of Fe(OH)2 phase transformation to produce H2 during low temperature serpentinization[D]. Guangzhou:South China University of Technology,2022.
[36] KLEIN F,BACH W,JÖNS N,et al. Iron partitioning and hy drogen generation during serpentinization of abyssal peridotites from 15°N on the Mid-Atlantic Ridge[J]. Geochimica et Cos mochimica Acta,2009,73(22):6868-6893.
[37] ALLEN D E,SEYFRIED W E. Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at midocean ridges:An experimental study at 400℃,500 bars[J]. Geochimica et Cosmochimica Acta,2003,67(8):1531-1542.
[38] 黄瑞芳,孙卫东,丁兴,等. 二氧化硅对橄榄石热液蚀变反应速率和氢气形成的影响[J]. 中国科学:地球科学,2024,54(1):231-243. HUANG Ruifang,SUN Weidong,DING Xing,et al. The influ ence of silica on reaction rates and molecular hydrogen(H2)generation during olivine hydrothermal alteration[J]. Scientia Sinica(Terrae),2024,54(1):231-243.
[39] 黄瑞芳,赵予生,丁兴,等. 压力对蛇纹石化速率影响的实验研究[R]. 重庆:2020年中国地球科学联合学术年会,2020. HUANG Ruifang,ZHAO Yisheng,DING Xing,et al. Experi mental study on the effect of pressure on the rate of serpentinite formation[R]. Chongqing:2020 Annual Meeting of Chinese Geoscience Union,2020.
[40] 黄瑞芳,孙卫东,丁兴,等. 橄榄石和橄榄岩蛇纹石化过程中气体形成的对比研究[J]. 中国科学:地球科学,2016,46(1): 97-106. HUANG Ruifang,SUN Weidong,DING Xing,et al. Olivine versus peridotite during serpentinization:Gas formation[J]. Scientia Sinica(Terrae),2016,46(1):97-106.
[41] SONG Han,OU Xinwen,HAN Bin,et al. An overlooked natu ral hydrogen evolution pathway:Ni2+ boosting H2O reduction by Fe(OH)2 oxidation during lowtemperature serpentinization [J]. Angewandte Chemie,2021,60(45):24054-24058.
[42] MCCOLLOM T M,KLEIN F,ROBBINS M,et al. Tempera ture trends for reaction rates,hydrogen generation,and parti tioning of iron during experimental serpentinization of olivine [J]. Geochimica et Cosmochimica Acta,2016,181:175-200.
[43] JACKSON O,LAWRENCE S R,HUTCHINSON I P,et al. Natural hydrogen:Sources,systems and exploration plays[J]. Geoenergy,2024,2(1):geoenergy2024-002.
[44] ROCHE V,GEYMOND U,BOKA-MENE M,et al. A new continental hydrogen play in Damara Belt(Namibia)[J]. Sci entific Reports,2024,14(1):11655.
[45] 黄柳琴,李林鑫,蒋宏忱. BIFs的形成及其铁氧化机制研究进展与展望[J]. 地学前缘,2023,30(2):333-346. HUANG Liuqin,LI Linxin,JIANG Hongchen. Formation and iron oxidation mechanisms of BIFs:Research progress review and outlook[J]. Earth Science Frontiers,2023,30(2):333-346.
[46] 王崴平. 全球主要BIF铁矿集区成矿规律与国际铁矿资源并购开发策略研究[D]. 北京:中国地质科学院,2017. WANG Weiping. Research on the ore-forming laws of major BIF iron ore concentration areas worldwide and the develop ment strategies of international iron ore resource mergers and acquisitions[D]. Beijing:Chiese Academy of Geological Sci ences,2017
[47] GEYMOND U,RAMANAIDOU E,LÉVY D,et al. Can weath ering of banded iron formations generate natural hydrogen? Evidence from Australia,Brazil and South Africa[J]. Minerals, 2021,12(2):163.
[48] MAIGA O,DEVILLE E,LAVAL J,et al. Characterization of the spontaneously recharging natural hydrogen reservoirs of Bourakebougou in Mali[J]. Scientific Reports,2023,13(1): 11876.
[49] TRUCHE L,DONZÉ F V,GOSKOLLI E,et al. A deep reser voir for hydrogen drives intense degassing in the Bulqizë ophio lite[J]. Science,2024,383(6683):618-621.
[50] GILAT A L,VOL A. Degassing of primordial hydrogen and he lium as the major energy source for internal terrestrial processes [J]. Geoscience Frontiers,2012,3(6):911-921.
[51] WALSHE J L. Degassing of hydrogen from the Earth’s core and related phenomena of system Earth[J]. Geochimica et Cos mochimica Acta,2006,70(18):A684.
[52] MAO H K,HU Q,YANG L,et al. When water meets iron at Earth’s core-mantle boundary[J]. 2017,4(6):870-878.
[53] TOULHOAT H,ZGONNIK V. Chemical differentiation of planets:A core issue[J]. The Astrophysical Journal,2022,924(2):83.
[54] GILAT A,VOL A. Primordial hydrogen-helium degassing,an overlooked major energy source for internal terrestrial processes [J]. 2005,2(1/2):125-167.
[55] CANFIELD D E,ROSING M T,BJERRUM C. Early anaero bic metabolisms[J]. Philosophical Transactions of the Royal Society B:Biological Sciences,2006,361(1474):1819-1836.
[56] HOLLAND H D. Volcanic gases,black smokers,and the great oxidation event[J]. Geochimica et Cosmochimica Acta,2002, 66(21):3811-3826.
[57] HALPAAP F,RONDENAY S,PERRIN A,et al. Earthquakes track subduction fluids from slab source to mantle wedge sink [J]. Science Advances,2019,5(4):7369.
[58] ZHANG M,LI Y. The role of geophysics in geologic hydrogen resources[J]. Journal of Geophysics and Engineering,2024,21(4):1242-1253.
[59] 杨经绥,连东洋,吴魏伟,等. 俯冲物质深地幔循环——地球动力学研究的一个新方向[J]. 地质学报,2021,95(1):42-63. YANG Jingsui,LIAN Dongyang,WU Weiwei,et al. Recycling of subducted crust in deep mantle:A new research orie ntation to earth dynamics[J]. Acta Geologica Sinica,2021,95(1):42-63.
[60] 朱日祥,徐义刚. 西太平洋板块俯冲与华北克拉通破坏[J]. 中国科学:地球科学,2019,49(9):1346-1356. ZHU Rixiang,XU Yigang. The subduction of the west Pacific plate and the destruction of the North China Craton[J]. Scien tia Sinica(Terrae),2019,49(9):1346-1356.
[61] SEN G. Subduction Zone Magmas[M]//SEN G. Petrology: Principles and practice. Heidelberg:Springer Berlin Heidel berg,2014:209-242.
[62] 吴福元,万博,赵亮,等. 特提斯地球动力学[J]. 岩石学报, 2020,36(6):1627-1674. WU Fuyuan,WAN Bo,ZHAO Liang,et al. Tethyan geodynam ics[J]. Acta Petrologica Sinica,2020,36(6):1627-1674.
[63] 朱日祥,赵盼,万博,等. 新特提斯单向俯冲的动力学机制[J]. 科学通报,2023,68(13):1699-1708. ZHU Rixiang,ZHAO Pan,WAN Bo,et al. Geodynamics of the one-way subduction of the Neo-Tethys Ocean[J]. Chinese Sci ence Bulletin,2023,68(13):1699-1708.
[64] TICHADOU C,GODARD M,MUÑOZ M,et al. Mineralogi cal and geochemical study of serpentinized peridotites from the North-Western Pyrenees:New insights on serpentinization along magma-poor continental passive margins[J]. Lithos, 2021,406-407:106521.
[65] LEFEUVRE N,TRUCHE L,DONZÉ F,et al. Native H2 explo ration in the Western Pyrenean Foothills[J]. Geochemistry, Geophysics,Geosystems,2021,22(8):1-20.
[66] LEONG J A,NIELSEN M,MCQUEEN N,et al. H2 and CH4 outgassing rates in the Samail ophiolite,Oman:Implications for low-temperature,continental serpentinization rates[J]. Geo chimica et Cosmochimica Acta,2023,347:1-15.
[67] Natural hydrogen in the Monzón-1 well,Ebro basin,northern Spain-Geological Society of France publication-Helios[EB/OL]. (2022-06-20)[2024-08-30]. https://helios-aragon.com/naturalhydrogen-in-the-monzon-1-well-ebro-basin-northern-spain-geological-society-of-france-publication/.
[68] SASPITURRY N,ALLANIC C,PEYREFITTE A. Serpentini zation and magmatic distribution in a hyperextended rift suture: Implication for natural hydrogen exploration(Mauléon Basin, Pyrenees)[J]. Tectonics,2024,43(8):1-26.
[69] LEFEUVRE N,TRUCHE L,DONZÉ F V,et al. Natural hydro gen migration along thrust faults in foothill basins:The North Pyrenean Frontal Thrust case study[J]. Applied Geochemistry, 2022,145:105396.
[70] 代堰锫,朱玉娣,张连昌,等. 国内外前寒武纪条带状铁建造研究现状[J]. 地质论评,2016,62(3):735-757. DAI Yanpei,ZHU Yudi,ZHANG Lianchang,et al. An overview of studies on Precambrian banded iron formations(BIFs)in China and abroad[J]. Geological Review,2016,62(3):735-757.
[71] LECHTE M A,WALLACE M W,HOFFMANN K H. Glaciomarine iron formation deposition in a c. 700 Ma glaciated mar gin:Insights from the Chuos Formation,Namibia[M]//LE HERON D P,HOGAN K A,PHILLIPS E R,et al. Glaciated margins:The sedimentary and geophysical archive. London: The Geological Society of London,2019.
[72] LÉVY D,ROCHE V,PASQUET G,et al. Natural H2 explora tion:Tools and workflows to characterize a play[J]. Science and Technology for Energy Transition,2023,78:27.
[73] MATHOOKO J M,KARIUKI S T. Disturbances and species distribution of the riparian vegetation of a Rift Valley stream [J]. African Journal of Ecology,2000,38(2):123-129.
[74] VACQUAND C,DEVILLE E,BEAUMONT V,et al. Reduced gas seepages in ophiolitic complexes:Evidences for multiple origins of the H2-CH4-N2 gas mixtures[J]. Geochimica et Cos mochimica Acta,2018,223:437-461.
[75] 孟庆强. 地质体中天然氢气成因识别方法初探[J]. 石油实验地质,2022,44(3):552-558. MENG Qingqiang. Identification method for the origin of natu ral hydrogen gas in geological bodies[J]. Petroleum Geology & Experiment,2022,44(3):552-558.
[76] NEWELL K D,DOVETON J H,MERRIAM D F,et al. H2-rich and hydrocarbon gas recovered in a deep Precambrian well in northeastern Kansas[J]. Natural Resources Research,2007,16(3):277-292.
[77] Significant concentrations of hydrogen and helium detected in the Ramsay 1 well|Gold Hydrogen[EB/OL].(2023-11-02) [2024-08-30]. https://www.goldhydrogen.com.au/asx-releases/ significant-concentrations-of-hydrogen-and-helium-detected-inthe-ramsay-1-well/.
[78] HUTCHINSON I P,JACKSON O,STOCKS A E,et al. Green stones as a source of hydrogen in cratonic sedimentary basins [J]. Geological Society of London,Special Publications,2024, 547(1):511-525.
[79] MAIGA O,DEVILLE E,LAVAL J,et al. Trapping processes of large volumes of natural hydrogen in the subsurface:The em blematic case of the Bourakebougou H2 field in Mali[J]. Inter national Journal of Hydrogen Energy,2023,50:640-647.
[80] DILSHAN R A D P,PERERA M S A,MATTHAI S K. Effect of mechanical weakening and crack formation on caprock integ rity during underground hydrogen storage in depleted gas reser voirs:A comprehensive review[J]. Fuel,2024,371:131893.
[81] GRGIC D,AL SAHYOUNI F,GOLFIER F,et al. Evolution of gas permeability of rock salt under different loading conditions and implications on the underground hydrogen storage in salt caverns[J]. Rock Mechanics and Rock Engineering,2022,55(2):691-714.
[82] ALAFNAN S. Factors influencing hydrogen migration in cap rocks:Establishing new screening criteria for the selection of underground hydrogen storage locations[J]. International Jour nal of Hydrogen Energy,2024,83:1099-1106.
[83] 黎富炀,姚行顺,李春杰,等. 地下储氢技术:存储机理、泄漏风险及存在问题[R]. 武汉:2023油气田勘探与开发国际会议,2023。 LI Fuyang,YAO Xingshun,LI Chunjie,et al. Underground hy drogen storage technology:Storage mechanism,leakage risk, and existing problems[R]. Wuhan:2023 International Field Ex ploration and Development Conference,2023.
[84] 惠荣耀,丁安娜. 微生物在石油生成中的作用(二)——氢代谢及多源输入[J]. 沉积学报,2018,36(5):1023-1031. HUI Rongyao,DING Anna. Role of microorganisms in oil gen eration(Ⅱ):Hydrogen metabolism and organic matter input from many origins[J]. Acta Sedimentologica Sinica,2018,36(5):1023-1031.
[85] 冷欢,杨清,黄钢锋,等. 氢营养型产甲烷代谢途径研究进展[J].微生物学报,2020,60(10):2136-2160. LENG Huan,YANG Qing,HUANG Gangfeng,et al. Recent advances in hydrogenotrophic methanogenesis[J]. Acta Micro biologica Sinica,2020,60(10):2136-2160.
[86] 张雪,张辉,承磊. 获取有机物厌氧降解产甲烷过程中关键功能类群——互营细菌培养物[J]. 微生物学报,2019,59(2): 211-223. ZHANG Xue,ZHANG Hui,CHENG Lei. Key players in volved in methanogenic degradation of organic compounds: Progress on the cultivation of syntrophic bacteria[J]. Acta Mi crobiologica Sinica,2019,59(2):211-223.
[87] 张杰,陆雅海. 互营氧化产甲烷微生物种间电子传递研究进展[J]. 微生物学通报,2015,42(5):920-927. ZHANG Jie,LU Yahai. A review of interspecies electron trans fer in syntrophic-methanogenic associations[J]. Microbiology China,2015,42(5):920-927.
[88] 周飞,段生盛,张永庶,等. 柴达木盆地东部地区生物气形成机制[J]. 断块油气田,2013,20(4):422-425. ZHOU Fei,DUAN Shengsheng,ZHANG Yongshu,et al. For mation mechanism of biogas in eastern Qaidam Basin[J]. Fault-Block Oil & Gas Field,2013,20(4):422-425.
[89] 夏遵义,白志强. 利用产甲烷菌进行CO2地质固定在中国生物气田的应用初探[J].石油勘探与开发,2004,31(6):72-74. XIA Zunyi,BAI Zhiqiang. Discussion on a CO2 geological seques tration by methanogens in the biogenic gas field in China[J]. Petroieum Expioration and Development,2004,31(6):72-74.
[90] 帅燕华,张水昌,陈建平,等. 深部生物圈层微生物营养底物来源机制及生物气源岩特征分析[J]. 中国科学:地球科学, 2010,40(7):866-872. SHUAI Yanhua,ZHANG Shuichang,CHEN Jianping,et al. The source of nutrient substrates for microbes in the deep bio sphere and the characteristics of biogenic gas source rock[J]. Science China Earth Sciences,2010,40(7):866-872.
[91] 帅燕华,张水昌,苏爱国,等. 柴达木盆地三湖地区产甲烷作用仍在强烈进行的地球化学证据[J]. 中国科学D辑:地球科学,2009,39(6):734-740. SHUAI Yanhua,ZHANG Shuichang,SU Aiguo,et al. Geo chemical evidence for strong ongoing methanogenesis in Sanhu region of Qaidam Basin[J]. Science China Series D:Earth Sci ences,2009,39(6):734-740.
[92] 吴嘉,季富嘉,王远,等. 氢逸度对沉积有机质热演化的影响: 超深层生烃的启示[J]. 中国科学:地球科学,2022,52(11): 2275-2288. WU Jia,JI Fujia,WANG Yuan,et al. Influence of hydrogen fu gacity on thermal transformation of sedimentary organic mat ter:Implications for hydrocarbon generation in the ultra-depth [J]. Scientia Sinica(Terrae),2022,52(11):2275-2288.
[93] 李亢. 富氢流体与矿物催化对深层有机质生烃影响[D]. 北京:中国科学院大学,2022. LI Kang. The influence of hydrogen rich fluids and mineral ca talysis on deep organic matter hydrocarbon generation[J]. Bei jing:University of Chinese Academy of Sciences,2022.
[94] 唐相路,姜振学,邵泽宇,等. 第四系泥岩型生物气储层特征及动态成藏过程[J]. 现代地质,2022,36(2):682-694. TANG Xianglu,JIANG Zhenxue,SHAO Zeyu,et al. Reservoir characteristics and dynamic accumulation process of the Qua ternary mudstone biogas[J]. Geoscience,2022,36(2):682-694.
[1] DOU Lirong, LIU Huaqing, LI Bo, QI Wen, SUN Dong, YIN Lu, HAN Shuangbiao. Global natural hydrogen exploration and development situation and prospects in China [J]. Lithologic Reservoirs, 2024, 36(2): 1-14.
[2] JIN Qiuyue. Genesis types and accumulation characteristics of crude oil in southeast slope of Weixinan Depression,Beibuwan Basin [J]. Lithologic Reservoirs, 2020, 32(1): 11-18.
[3] Chen Hehe,Zhu Xiaomin,Chen Chunfang,Yin Wei . Characteristics of source-reservoir-caprock assemblage and hydrocarbon accumulation of Yanchang Formation in Binchang block, Ordos Basin [J]. Lithologic Reservoirs, 2016, 28(2): 56-63.
[4] Jiang Tao, Li Huiyong, Li Xinqi, Xu Peng, Hu Anwen. Hydrocarbon accumulation characteristics under the background of strike-slip faults in Shaleitian uplift, west Bohai Sea [J]. LITHOLOGIC RESERVOIRS, 2015, 27(5): 172-175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] PANG Xiongqi,CHEN Dongxia, ZHANG Jun. Concept and categorize of subtle reservoir and problems in its application[J]. Lithologic Reservoirs, 2007, 19(1): 1 -8 .
[2] YANG Qiulian, LI Aiqin, SUN Yanni, CUI Panfeng. Classification method for extra-low permeability reservoirs[J]. Lithologic Reservoirs, 2007, 19(4): 51 -56 .
[3] LIU Huaqing, YUAN Jianying, LI Xiangbo, WAN Yanrong, LIAO Jianbo. Lake basin evolution of Ordos Basin during Middle-Late Triassic and its origin analysis[J]. Lithologic Reservoirs, 2007, 19(1): 52 -56 .
[4] YANG Zhanlong, PENG Licai, CHEN Qilin, GUO Jingyi,LI Zaiguang, HUANG Yunfeng. Petroleum accumulation condition analysis and lithologic reservoir exploration in Shengbei Depression of Turpan-harmy Basin[J]. Lithologic Reservoirs, 2007, 19(1): 62 -67 .
[5] ZHENG Rongcai,GENG Wei,ZHOU Gang,HAN Yonglin,WANG Haihong,WEN Huaguo. Diagenesis and diagenetic facies of Chang 6 sandstone of Yanchang Formation in Baibao area, Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(2): 1 -8 .
[6] WANG Tianqi, WANG Jiangong, LIANG Sujuan, SHA Xuemei. Fine oil exploration of Putaohua Formation in Xujiaweizi area, Songliao Basin[J]. Lithologic Reservoirs, 2007, 19(2): 22 -27 .
[7] TANG Zhenxing,YANG Guang,HUANG Mingzhi,ZHANG Juhong,SONG Lei,MA Lin,DING Ye. The depositional mechanism and lithologic reservoir s of thick sand bodies in the third member of Qingshankou Formation, Haituozi-Dabusu area[J]. Lithologic Reservoirs, 2007, 19(2): 50 -52 .
[8] CHEN Yongbo,YONG Xueshan,LIU Huaqing. The research and application of lithologic hydrocarbon reservoirs prediction in sedimentary system tract:An example from Mesozoic Yanchang Formation in northern Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(2): 62 -66 .
[9] HUANG Sijing,HUANG Peipei,WANG Qingdong,LIU Haonian,WU Meng,ZOU Mingliang. The significance of cementation in porosity preservation in deep-buried sandstones[J]. Lithologic Reservoirs, 2007, 19(3): 7 -13 .
[10] YANG Hua,LIU Xianyang,ZHANG Caili,HAN Tianyou,HUI Xiao. The main controlling factors and distribution of low permeability lithologic reservoirs of Triassic Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(3): 1 -6 .
TRENDMD: