Lithologic Reservoirs ›› 2025, Vol. 37 ›› Issue (3): 176-184.doi: 10.12108/yxyqc.20250316

• PETROLEUM EXPLORATION • Previous Articles    

Influence of inclined micro-fractures on shearwave attenuation in limestone

ZHOU Qingwen1,2, WU Dong3, CAI Ming1,2, ZHANG Chengguang1,2, CHEN Yuanbo4, LIN Wang3, ZHANG Yuanjun1,2, LI Zhi1,2   

  1. 1. Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education(Yangtze University), Wuhan 430100, China;
    2. College of Geophysics and Petroleum Resources, Yangtze University, Wuhan 430100, China;
    3. Information Center, Engineering Technology R & D Company Limited, CNPC, Beijing 102206, China;
    4. No. 1 Oil Production Plant, Northwest Oilfield Company, SINOPEC, Luntai 841604, Xinjiang, China
  • Received:2024-07-23 Revised:2024-09-04 Published:2025-05-10

Abstract: To solve the problem of fine evaluation of microfractures in limestone reservoirs,based on the prin‐ciple of acoustic propagation,acoustic physical experiments were carried out under different fracture conditions (fracture dip angle and fracture aperture),and a characterization model of fracture parameters was established to quantitatively analyze the effects of fracture inclination and fracture opening on shear wave attenuation. The model has been applied to the first member of the Paleogene Shahejie Formation in Caofeidian area,Bohai Bay Basin. The experimental results show that:(1)Five groups of artificial fracture cores with different inclinations, including 0,25°,40°,55° and 70°,are designed in the acoustic physics experiment of microfracture cores in limestone reservoirs. 9 PET films of 25 μm,50 μm,100 μm,150 μm,200 μm,300 μm,400 μm,500 μm and 1 000 μm were used as 9 different fracture aperture degrees. The acoustic wave frequency was maintained at 250 kHz,and the transverse wave waveform under 9 fracture aperture conditions was measured for 5 groups of cores respectively. 32 channels of waveform data were continuously collected for each group of experiments,and the optimal waveform signal was obtained by filtering 32 channels of waveform through noise filtering program and superposition.(2)The acoustic physical test results show that the shear wave attenuation is greatly affected by fractures,and the attenuation trend gradually slows down with the increase of fracture aperture. The attenuation coefficient increases logarithmically with the increase of fracture aperture. When the fracture aperture is less than or equal to 300μm,the attenuation coefficient is more sensitive. Under the condition of the same fracture aperture degree,the shear wave attenuation coefficient decreases with the increase of fracture dip angle when the fracture dip angle is 0-40°,and increases with the increase of fracture dip angle when the fracture dip angle is greater than 40°.(3)The fracture parameter characterization model(Formula 3)is obtained based on the core physical experiment.(4)The relative error of fracture opening degree obtained by the fracture parameter characterization model in the first member of Paleogene Shahejie Formation in Caofeidian area of Bohai Bay Basin is 4.57% and the mean absolute deviation is 18.9 μm,indicating a high agreement.

Key words: rock physics experiment, shear wave attenuation, fracture dip angle, fracture aperture, fracture parameters inversion model, array sonic log, limestone, the first member of Shahejie Formation, Caofeidian area

CLC Number: 

  • P631.8
[1] ZHAO Kui,DU Peng. A new production prediction model for multistage fractured horizontal well in tight oil reservoirs[J]. Advances in Geo-Energy Research,2020,4(2):152-161.
[2] 章成广,江万哲,潘和平. 声波测井原理与应用[M]. 北京:石油工业出版社,2009. ZHANG Chengguang,JIANG Wanzhe,PAN Heping. Principle and application of acoustic logging[M]. Beijing:Petroleum Industry Press,2009.
[3] 陈斌,蔺敬旗,李兆春. 阵列声波测井在页岩油体积压裂效果评价中的应用[J]. 断块油气田,2021,28(4):550-554. CHEN Bin,LIN Jingqi,LI Zhaochun,et al. Application of array acoustic logging in shale oil volume fracturing effect evaluation[J]. Fault-Block Oil & Gas Field,2021,28(4):550-554.
[4] 唐圣来. 基于嵌入式多尺度裂缝模型的地质建模方法及应用[J]. 特种油气藏,2023,30(1):36-40.TANG Shenglai. Geological modeling method and its application based on embedded multi-scale fracture model[J]. Special Oil & Gas Reservoirs,2023,30(1):36-40.
[5] SU Yuanda,LI Zheng,XU Song,et al. Elastic-wave evaluation of downhole hydraulic fracturing:Modeling and field applications[J]. Geophysics,2018,83(1):D1-D8.
[6] HORNBY B E,JOHNSON D L,WINKLER K W. Fracture evaluation using reflected Stoneley-wave arrivals[J]. Geophysics, 1989,54(10):1274-1288.
[7] 唐军,章成广,信毅. 油基钻井液条件下裂缝声波测井评价方法:以塔里木盆地库车坳陷克深地区致密砂岩储集层为例[J]. 石油勘探与开发,2017,44(3):389-397. TANG Jun,ZHANG Chengguang,XIN Yi. A fracture evaluation by acoustic logging technology in oil-based mud:A case from tight sandstone reservoirs in Keshen area of Kuqa depression,Tarim Basin,NW China[J]. Petroleum Exploration and Development,2017,44(3):389-397.
[8] LEE S Q,LI Huanran,GU Xihao,et al. Near-borehole characteristics of hydraulic fractures and fracturing-induced sonicwave attenuation[J]. Geophysics,2019,84(3):D81-D87.
[9] 王俊超,陶先高,李佳琦,等. 吉木萨尔凹陷芦草沟组"上甜点段"页岩裂缝发育主控因素及评价[J]. 中国海上油气,2022, 34(6):80-92. WANG Junchao,TAO Xiangao,LI Jiaqi,et al. Main controlling factors and evaluation of "upper dessert section" shale fracture development in Lucaogou Formation,Jimsar Sag[J]. China Offshore Oil and Gas,2022,34(6):80-92.
[10] 杨博,章成广,蔡明. 基于斯通利波能量衰减的裂缝渗透性评价方法研究[J]. 地球物理学进展,2019,34(3):1127-1131. YANG Bo,ZHANG Chengguang,CAI Ming. Research on evaluation method of fracture permeability based on stoneley wave energy attenuation[J]. Progress in Geophysics,2019,34(3):1127-1131.
[11] TANG Xiaoming,CHENG C H. Fast inversion of formation permeability from Stoneley wave logs using a simplified BiotRosenbaum model[J]. Geophysics,1996,61(3):639-645.
[12] 桂金咏,李胜军,高建虎,等. 基于特征变量扩展的含气饱和度随机森林预测方法[J]. 岩性油气藏,2024,36(2):65-75. GUI Jinyong,LI Shengjun,GAO Jianhu,et al. A random forests prediction method for gas saturation based on feature variable Extension[J]. Lithologic Reservoirs,2024,36(2):65-75.
[13] 唐晓明,郑传汉,赵晓敏. 定量测井声学[M]. 北京:石油工业出版社,2004:75-107. TANG Xiaoming,ZHENG Chuanhan,ZHAO Xiaomin. Quantitative logging acoustics[M]. Beijing:Petroleum Industry Press, 2004:75-107.
[14] 赵军,张涛,何胜林,等. 基于参数优选的储层渗透率深度置信网络模型预测初探[J]. 油气藏评价与开发,2021,11(4):577-585. ZHAO Jun,ZHANG Tao,HE Shenglin,et al. Prediction of reservoir permeability by deep belief network based on optimized parameters[J]. Petroleum Reservoir Evaluation and Development,2021,11(4):577-585.
[15] 李雄炎,秦瑞宝,魏丹,等. 中国海上潜山裂缝性储层测井评价研究进展[J]. 中国海上油气,2023,35(5):69-82. LI Xiongyan,QIN Ruibao,WEI Dan,et al. Research progress in logging evaluation of offshore buried-hill fractured reservoirs in China[J]. China Offshore Oil and Gas,2023,35(5):69-82.
[16] GUI Jinyong,YIN Xingyao,GAO Jianhu,et al. Petrophysical properties prediction of deep dolomite reservoir considering pore structure[J]. Acta Geophysica,2022,70(4):1507-1518.
[17] 刘智颖,章成广,唐军,等. 裂缝对岩石电阻率的影响及其在含气饱和度计算中的应用[J]. 岩性油气藏,2018,30(2):120-128. LIU Zhiying,ZHANG Chengguang,TANG Jun,et al. Influence of fracture on rock resistivity and its application in saturation calculation[J]. Lithologic Reservoirs,2018,30(2):120-128.
[18] 桂金咏,高建虎,李胜军,等.基于弹性参数加权统计的地震岩相预测方法[J].地球物理学报,2020,63(1):298-312. GUI Jinyong,GAO Jianhu,LI Shengjun,et al. The method of seismic lithofacies prediction based on weighted statistics of elastic parameters[J]. Chinese Journal of Geophysics,2020,63(1):298-312.
[19] RATHORE J S. 控制裂隙几何结构的合成砂岩的纵、横波各向异性[J]. 石油物探译丛,1996,19(4):83-85. RATHORE J S. Anisotropy of longitudinal and transverse waves in synthetic sandstone controlled by fracture geometry[J]. Petroleum Reservoir Evaluation and Development,1996, 19(4):83-85.
[20] STEWART R R,DYAUR N,OMOBOYA B,et al. Physical modeling of anisotropic domains:Ultrasonic imaging of laser-etched fractures in glass[J]. Geophysics:Journal of the Society of Exploration Geophysicists,2013,78(1):D11-D19.
[21] AMALOKWU K,CHAPMAN M,BEST A I,et al. Water saturation effects on P-wave anisotropy in synthetic sandstone with aligned fractures[J]. Geophysical Journal International,2015, 202:1088-1095.
[22] 魏建新,狄帮让. 裂隙密度对纵波传播特性影响的实验观测[J]. 石油地球物理勘探,2007,42(5):554-559. WEI Jianxin,DI Bangrang. Experimentally surveying influence of fractural density on P-wave propagating characters[J]. Petroleum Geophysical Prospecting,2007,42(5):554-559.
[23] 尹志恒,狄帮让,魏建新,等. 裂缝参数对纵波能量衰减影响的物理模型研究[J]. 石油地球物理勘探,2012,47(5):728-734. YIN Zhiheng,DI Bangrang,WEI Jianxin,et al. Physical model research on the influence of fracture parameters on compressional wave energy attenuation[J]. Petroleum Geophysical Prospecting,2012,47(5):728-734.
[24] 赵卫华,孙东生,李阿伟,等. 裂隙对地震波速度影响的物理模型试验研究[R]. 北京:中国地球科学联合学术年会,2014. ZHAO Weihua,SUN Dongsheng,LI Awei,et al. Physical model test study on the effect of cracks on seismic wave velocity[R]. Beijing:Annual Meeting of Chinese Geoscience Union,2014.
[25] 蔡明,章成广,唐军,等. 参数估计法声波远探测反射波提取效果影响因素研究[J]. 西安石油大学学报(自然科学版), 2020,35(1):42-48. CAI Ming,ZHANG Chengguang,TANG Jun,et al. Study on factors of influencing extraction effect of reflection wave in acoustic remote detection using parameter estimation method[J]. Journal of Xi'an Shiyou University(Natural Science Edition),2020,35(1):42-48.
[26] 蔡明,章成广,韩闯,等. 微裂缝对横波衰减影响的实验研究及其在致密砂岩裂缝评价中的应用[J]. 中国石油大学学报(自然科学版),2020,44(1):45-52. CAI Ming,ZHANG Chengguang,HAN Chuang,et al. Experimental research of effect of microfracture on shear wave attenu ation and its application on fracture evaluation in tight sand formation[J]. Journal of China University of Petroleum(Edition of Natural Science),2020,44(1):45-52.
[27] 李宁,王克文,刘鹏,等. 不同裂缝条件下斯通利波幅度衰减实验[J]. 石油勘探与开发,2021,48(2):258-265. LI Ning,WANG Kewen,LIU Peng,et al. Experimental study on attenuation of Stoneley wave under different fracture factors[J]. Petroleum Exploration and Development,2021,48(2):258-265.
[28] 陈乔,刘向君,梁利喜,等. 裂缝模型声波衰减系数的数值模拟[J]. 地球物理学报,2012,55(6):2044-2052. CHEN Qiao,LIU Xiangjun,LIANG Lixi,et al. Numerical simulation of the fractured model acoustic attenuation coefficient[J]. Chinese Journal of Geophysics,2012,55(6):2044- 2052.
[29] ZHOU Ying,ZHONG Xiaoqin,NIE Xin. Identification and parameter characterization of pores and fractures in shales based on multi-scale digital core data[J]. Advances in Geo-Energy Research,2024,13(2):146-160.
[30] CAI Ming,WU Hongliang,LIU Peng. Intelligent calculation method of relative sonic attenuation and its application to fracture evaluation in tight sandstone reservoir[J]. Journal of Petroleum Science and Engineering,2022,218:2-9.
[31] 赵岩,毛宁波,陈旭. 基于时频域信噪比的自适应增益限反Q滤波方法[J]. 岩性油气藏,2021,33(4):85-92. ZHAO Yan,MAO Ningbo,CHEN Xu. Self-adaptive gain-limit inverse Q filtering method based on SNR in time-frequency domain[J]. Lithologic Reservoirs,2021,33(4):85-92.
[32] 孟会杰,苏勤,曾华会,等. 基于独立分量分析的地震信号盲源分离及应用[J]. 岩性油气藏,2021,33(4):93-100. MENG Huijie,SU Qin,ZENG Huahui,et al. Blind source separation of seismic signals based on ICA algorithm and its application[J]. Lithologic Reservoirs,2021,33(4):93-100.
[33] 明君,周建科,彭刚,等. 地震资料频变剩余相位校正技术及其在渤海BZ油田的应用[J]. 中国海上油气,2023,35(4):66-75. MING Jun,ZHOU Jianke,PENG Gang,et al. Frequency-variation residual phase correction technique of seismic data and its application in Bohai BZ oilfield[J]. China Offshore Oil and Gas, 2023,35(4):66-75.
[34] 杜晓宇,金之钧,曾联波,等. 基于成像测井的深层陆相页岩油储层天然裂缝有效性评价[J]. 石油与天然气地质,2024, 45(3):852-865. DU Xiaoyu,JIN Zhijun,ZENG Lianbo,et al. Evaluation of natural fracture effectiveness in deep lacustrine shale oil reservoirs based on formation microresistivity imaging logs[J]. Oil & Gas Geology,2024,45(3):852-865.
[35] 任杰. 碳酸盐岩裂缝性储层常规测井评价方法[J]. 岩性油气藏,2020,32(6):129-137. REN Jie. Conventional logging evaluation method for carbonate fractured reservoir[J]. Lithologic Reservoirs,2020,32(6):129-137.
[36] 张璐,何峰,陈晓智,等. 基于倾角导向滤波控制的似然属性方法在断裂识别中的定量表征[J]. 岩性油气藏,2020,32(2):108-114. ZHANG Lu,HE Feng,CHEN Xiaozhi,et al. Quantitative characterization of fault identification using likelihood attribute based on dip-steering filter control[J]. Lithologic Reservoirs, 2020,32(2):108-114.
[37] 包汉勇,刘超,甘玉青,等. 四川盆地涪陵南地区奥陶系五峰组-志留系龙马溪组页岩古构造应力场及裂缝特征[J]. 岩性油气藏,2024,36(1):14-22. BAO Hanyong,LIU Chao,GAN Yuqing,et al. Paleotectonic stress field and fracture characteristics of shales of Ordovician Wufeng Formation to Silurian Longmaxi Formation in southern Fuling area,Sichuan Basin[J]. Lithologic Reservoirs,2024,36(1):14-22.
[1] YAN Xueying, SANG Qin, JIANG Yuqiang, FANG Rui, ZHOU Yadong, LIU Xue, LI Shun, YUAN Yongliang. Main controlling factors for the high yield of tight oil in the Jurassic Da’anzhai Section in the western area of Gongshanmiao, Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(6): 98-109.
[2] LUO Beiwei, YIN Jiquan, HU Guangcheng, CHEN Hua, KANG Jingcheng, XIAO Meng, ZHU Qiuying, DUAN Haigang. Characteristics and controlling factors of high porosity and permeability limestone reservoirs of Cretaceous Cenomanian in the western United Arab Emirates [J]. Lithologic Reservoirs, 2023, 35(6): 63-71.
[3] XIE Rui, ZHANG Shangfeng, ZHOU Lin, LIU Haotian, YAO Mingjun, JIANG Xuegui. Hydrocarbon accumulation characteristics of tight reservoirs of Da'anzhai member of Jurassic Ziliujing Formation in eastern Sichuan Basin [J]. Lithologic Reservoirs, 2023, 35(1): 108-119.
[4] CHENG Danhua, JIAO Xiarong, WANG Jianwei, ZHUANG Dongzhi, WANG Zhengjun, JIANG Shan. Shale oil reservoir characteristics and significance of the first member of Paleogene Shahejie Formation in Nanpu Sag,Huanghua Depression [J]. Lithologic Reservoirs, 2022, 34(3): 70-81.
[5] ZHAO Xiaoxiao, YAN Jianping, WANG Min, HE Xian, ZHONG Guanghai, WANG Jun, GENG Bin, HU Qinhong, LI Zhipeng. Logging identification method of lacustrine shale interlayers of Shahejie Formation in Zhanhua Sag [J]. Lithologic Reservoirs, 2022, 34(1): 118-129.
[6] LIU Hangyu, TIAN Zhongyuan, XU Zhenyong. Quantitative evaluation of carbonate reservoir pore structure based on fractal characteristics [J]. Lithologic Reservoirs, 2017, 29(5): 97-105.
[7] ZHU Mao, ZHU Xiaomin, ZENG Hongliu, DONG Yanlei, LIU Chang, ZHENG Ronghua. Depositional system of shallow-water meandering river delta:a case from the first member of Shahejie Formation in Zhaohuangzhuang-Suning area of Raoyang Sag, Jizhong Depression [J]. Lithologic Reservoirs, 2017, 29(2): 59-67.
[8] Wang Hao, Fei Huaiyi, Chen Xubin, Li Hongxi. Ramp facies limestone reservoir characteristics and controlling factorof Callovian-Oxflordian in Bieshikent Depression [J]. Lithologic Reservoirs, 2016, 28(6): 23-29.
[9] Chen Lihua. Influence of thermal alteration of minerals in strong water sensitive reservoir on physical properties:A case study from the first member of Shahejie Formation in Jinjia Oilfield [J]. Lithologic Reservoirs, 2016, 28(4): 121-126.
[10] LI Bin,LUO Donghong,LIANG Wei,WANG Ruiliang,WANG Su,DAI Jianwen. Applying duplex wave migration technology to predict faults and fractures in reef limestone reservoir [J]. Lithologic Reservoirs, 2012, 24(2): 92-97.
[11] GUO Changmin,SHI Zhensheng. Diagenesis and pore evolution of the first member of Shahejie Formation in Qikou Sag [J]. Lithologic Reservoirs, 2009, 21(1): 34-39.
[12] LIU Junying, YONG Xueshan, GAO Janhu. The appl ication of forward model ing for interpretat ion of seismic data of carbonatite reservoir [J]. Lithologic Reservoirs, 2007, 19(1): 109-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
TRENDMD: