Lithologic Reservoirs ›› 2022, Vol. 34 ›› Issue (1): 118-129.doi: 10.12108/yxyqc.20220112

• EXPLORATION TECHNOLOGY • Previous Articles     Next Articles

Logging identification method of lacustrine shale interlayers of Shahejie Formation in Zhanhua Sag

ZHAO Xiaoxiao1,2, YAN Jianping1,2,3, WANG Min4, HE Xian2, ZHONG Guanghai5, WANG Jun4, GENG Bin4, HU Qinhong6, LI Zhipeng4   

  1. 1. State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
    2. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
    3. Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan 430074, China;
    4. Research Institute of Exploration and Development, Sinopec Shengli Oilfield Company, Dongying 257015, Shandong, China;
    5. Research Institute of Shale Gas, PetroChina Southwest Oil & Gas Field Company, Chengdu 610500, China;
    6. Department of Earth and Environmental Sciences, University of Texas at Arlington, Arlington 76019, TX, USA
  • Received:2021-05-12 Revised:2021-07-14 Online:2022-01-01 Published:2022-01-21

Abstract: To study the relationship between lacustrine shale interlayer and shale oil productivity of the third member of Shahejie Formation in Zhanhua Sag,based on the analysis of core description,thin section identification,X-ray diffraction,scanning electron microscope and mercury injection,deconvolution method was used to process logging data to identify interlayer types.The results show that:(1) The content of brittle minerals in sandy interlayers and calcareous interlayers is high,which is easy to form fractures. The mass fraction of quartz-feldspar and calcite-dolomite is as high as 46.7% and 57.95% respectively.(2) Abnormal pressure fractures,mineral contraction fractures and interlayer fractures are developed in the interlayer,and structural fractures are also developed in the sandy interlayer. The average permeability of fractured interlayer is 7.59 mD.(3) The interlayers mainly develop micro and nano pores with good pore connectivity,including intergranular pores,dissolved pores and intergranular pores. Intergranular pores are shown in sandy interlayer. Dissolved pores are shown in calcareous interlayer,with more macropores.(4) The logging curve response characteristics of the interlayers are as following:both sandy interlayers and limestone interlayers are characterized by low natural gamma and high resistivity,sandy interlayer has low return under high natural gamma background,three-porosity curve and deep lateral resistivity shift to the right and three-porosity curve of limestone interlayer is obviously closed to the right. Overlapping the natural gamma and deep lateral resistivity curves processed by deconvolution method, it is quick to identify the interlayer with higher resolution and more intuitive,and effective to identify the lacustrine shale interlayer, which provides a basis for shale oil evaluation.

Key words: shale oil, sandy interlayer, limestone interlayer, log identification, deconvolution, log overlapping method, Shahejie Formation, Zhanhua Sag

CLC Number: 

  • P631
[1] 宋明水, 刘惠民, 王勇, 等. 济阳坳陷古近系页岩油富集规律认识与勘探实践. 石油勘探与开发, 2020, 47(2):225-235. SONG M S, LIU H M, WANG Y, et al. Enrichment rules and exploration practices of Paleogene shale oil in Jiyang Depression, Bohai Bay Basin, China. Petroleum Exploration and Development, 2020, 47(2):225-235.
[2] 张金川, 林腊梅, 李玉喜, 等. 页岩油分类与评价. 地学前缘, 2012, 19(5):322-331. ZHANG J C, LIN L M, LI Y X, et al. Classification and evaluation of shale oil. Earth Science Frontiers, 2012, 19(5):322-331.
[3] 王鸿升, 胡天跃. 渤海湾盆地沾化凹陷页岩油形成影响因素分析. 天然气地球科学, 2014, 25(增刊1):141-149. WANG H S, HU T Y. Analysis of influence factor of shale oil formation in Zhanhua Depression of Bohai Bay Basin. Natural Gas Geoscience, 2014, 25(Suppl 1):141-149.
[4] 朱德顺, 王勇, 朱德燕, 等. 渤南洼陷沙一段夹层型页岩油界定标准及富集主控因素. 油气地质与采收率, 2015, 22(5):15-20. ZHU D S, WANG Y, ZHU D Y, et al. Analysis on recognition criteria and enrichment factors of interlayer shale oil of Es1 in Bonan subsag. Petroleum Geology and Recovery Efficiency, 2015, 22(5):15-20.
[5] 张文正, 杨华, 杨伟伟, 等. 鄂尔多斯盆地延长组长7湖相页岩油地质特征评价. 地球化学, 2015, 44(5):505-515. ZHANG W Z, YANG H, YANG W W, et al. Assessment of geological characteristics of lacustrine shale oil reservoir in Chang 7 member of Yanchang Formation, Ordos Basin. Geochimica, 2015, 44(5):505-515.
[6] 宋国奇, 徐兴友, 李政, 等. 济阳坳陷古近系陆相页岩油产量的影响因素. 石油与天然气地质, 2015, 36(3):463-471. SONG G Q, XU X Y, LI Z, et al. Factors controlling oil production from Paleogene shale in Jiyang Depression. Oil & Gas Geology, 2015, 36(3):463-471.
[7] 朱德顺. 渤海湾盆地东营凹陷和沾化凹陷页岩油富集规律. 新疆石油地质, 2016, 37(3):270-274. ZHU D S. Accumulation pattern of shale oil in Dongying Sag and Zhanhua Sag, Bohai Bay Basin. Xinjiang Petroleum Geology, 2016, 37(3):270-274.
[8] 刘雅利, 刘鹏. 陆相富有机质泥页岩中夹层特征及其作用:以济阳坳陷为例. 油气地质与采收率, 2019, 26(5):1-9. LIU Y L, LIU P. Interlayer characteristics and their effect on continental facies organic-rich shale:A case study of Jiyang Depression. Petroleum Geology and Recovery Efficiency, 2019, 26(5):1-9.
[9] YAN J P, HE X, HU Q H, et al. Lower Es3 in Zhanhua Sag, Jiyang Depression:A case study for lithofacies classification in lacustrine mud shale. Applied Geophysics, 2018, 15(2):151-164.
[10] 王立东, 张明德, 吴清华, 等. 济阳坳陷区页岩气资源储存可能性浅析. 山东国土资源, 2016, 32(6):27-31. WANG L D, ZHANG M D, WU Q H, et al. Primary analysis on the possibility of shale gas resource storage in Jiyang Depression. Shandong Land and Resources, 2016, 32(6):27-31.
[11] 张春池, 彭文泉, 高兵艳, 等. 山东省页岩气有利勘探层系与资源评价. 油气地质与采收率, 2019, 26(2):7-13. ZHANG C C, PENG W Q, GAO B Y, et al. Favorable exploration strata and resource evaluation of shale gas in Shandong province. Petroleum Geology and Recovery Efficiency, 2019, 26(2):7-13.
[12] 张春池, 彭文泉, 胡小辉, 等. 沾化凹陷沙河街组页岩气成藏条件研究. 特种油气藏, 2019, 26(3):12-17. ZHANG C C, PENG W Q, HU X X, et al. Shale gas accumulation conditions of Shahejie Formation in Zhanhua Depression. Special Oil and Gas Reservoirs, 2019, 26(3):12-17.
[13] 孙焕泉. 济阳坳陷页岩油勘探实践与认识. 中国石油勘探, 2017, 22(4):1-14. SUN H Q. Exploration practice and cognitions of shale oil in Jiyang Depression. China Petroleum Exploration, 2017, 22(4):1-14.
[14] 谢玉洪, 罗小平, 王德英, 等. 渤海湾盆地渤中凹陷西次洼中生界古潜山油气成藏过程. 天然气工业, 2019, 39(5):15-24. XIE Y H, LUO X P, WANG D Y, et al. Hydrocarbon accumulation of composite-buried hill reservoirs in the western subsag of Bozhong Sag, Bohai Bay Basin. Natural Gas Industry, 2019, 39(5):15-24.
[15] 刘鹏. 不同体系域碎屑岩储集体成岩演化差异:以渤南洼陷沙三段为例. 油气地质与采收率, 2019, 26(2):60-67. LIU P. Diagenetic evolution difference of clastic reservoirs in different system tract:A case study of 3rd member of Shahejie Formation in Bonan Sag, Jiyang Depression. Petroleum Geology and Recovery Efficiency, 2019, 26(2):60-67.
[16] 闫建平, 言语, 彭军, 等. 湖相泥页岩天文地层旋回测井识别在沾化凹陷沙三下亚段的应用. 测井技术, 2017, 41(6):701-707. YAN J P, YAN Y, PENG J, et al. Log identification of astronomical cycle in lacustrine facies mud shale and its application in the lower 3rd member of Shahejie Formation in Zhanhua Sag. Well Logging Technology, 2017, 41(6):701-707.
[17] 李超, 朱筱敏, 朱世发, 等. 沾化凹陷罗家地区沙三下段泥页岩储层特征. 沉积学报, 2015, 33(4):795-808. LI C, ZHU X M, ZHU S F, et al. Shale reservoir characteristics of the lower 3th member of Shahejie Formation, Luojia area, Zhanhua Sag. Acta Sedimentologica Sinica, 2015, 33(4):795-808.
[18] NIE H K, HE Z L, LIU G X, et al. Genetic mechanism of highquality shale gas reservoirs in the Wufeng-Longmaxi formations in the Sichuan Basin. Natural Gas Industry B, 2021, 8(1):24-34.
[19] 郑荣才, 郭春利, 梁西文, 等. 四川盆地大安寨段非常规储层的储集空间类型与评价. 岩性油气藏, 2016, 28(1):16-29. ZHENG R C, GUO C L, LIANG X W, et al. Characteristics and evaluation of reservoir spaces of shale gas(oil)in Da'anzhai member of Ziliujing Formation in Sichuan Basin. Lithologic Reservoirs, 2016, 28(1):16-29.
[20] 陈登钱, 沈晓双, 崔俊, 等. 柴达木盆地英西地区深部混积岩储层特征及控制因素. 岩性油气藏, 2015, 27(5):211-217. CHEN D Q, SHEN X S, CUI J, et al. Reservoir characteristics and controlling factors of deep diamictite in Yingxi area, Qaidam Basin. Lithologic Reservoirs, 2015, 27(5):211-217.
[21] 张审琴, 李亚锋, 郭正权, 等. 英西湖相碳酸盐岩储层测井解释新方法. 测井技术, 2019, 43(6):620-625. ZHANG S Q, LI Y F, GUO Z Q, et al. Innovative log interpretation methods for lacustrine carbonate reservoirs in Yingxi block. Well Logging Technology, 2019, 43(6):620-625.
[22] 刘毅, 陆正元, 戚明辉, 等. 渤海湾盆地沾化凹陷沙河街组页岩油微观储集特征. 石油实验地质, 2017, 39(2):180-185. LIU Y, LU Z Y, QI M H, et al. Microscopic characteristic of shale oil reservoirs in Shahejie Formation in Zhanhua Sag, Bohai Bay Basin. Petroleum Geology and Experiment, 2017, 39(2):180-185.
[23] 孔星星, 肖佃师, 蒋恕, 等. 联合高压压汞和核磁共振分类评价致密砂岩储层:以鄂尔多斯盆地临兴区块为例. 天然气工业, 2020, 40(3):38-47. KONG X X, XIAO D S, JIANG S, et al. Application of the combination of high-pressure mercury injection and nuclear magnetic resonance to the classification and evaluation of tight sandstone reservoirs:A case study of the Linxing block in the Ordos Basin. Natural Gas Industry, 2020, 40(3):38-47.
[24] 任晓霞, 李爱芬, 王永政, 等. 致密砂岩储层孔隙结构及其对渗流的影响:以鄂尔多斯盆地马岭油田长8储层为例. 石油与天然气地质, 2015, 36(5):774-779. REN X X, LI A F, WANG Y Z, et al. Pore structure of tight sand reservoir and its influence on percolation:Taking the Chang 8 reservoir in Maling Oilfield in Ordos Basin as an example. Oil & Gas Geology, 2015, 36(5):774-779.
[25] 解伟. 西峰庆阳区长8储层微观孔隙结构及渗流特征研究. 西安:西北大学, 2008. XIE W. A study on micro-pore structure and infiltrating mechanism of Chang-8 reservoir in Qingyang area Xifeng Oilfield. Xi'an:Northwest University, 2008.
[26] 苗钱友, 朱筱敏, 郭洪明, 等. 滨里海盆地东缘中区块石炭系碳酸盐岩储层测井评价. 测井技术, 2014, 38(2):196-200. MIAO Q Y, ZHU X M, GUO H M, et al. Log evaluation of complex carbonate reservoirs in center block of the eastern margin of Pre-Caspian Basin. Well Logging Technology, 2014, 38(2):196-200.
[27] 张涛, 林承焰, 张宪国. 利用测井曲线反褶积方法提高薄层识别能力. 石油勘探与开发, 2010, 37(5):579-582. ZHANG T, LIN C Y, ZHANG X G. Improve thin beds discrimination using the log curves deconvolution method. Petroleum Exploration and Development, 2010, 37(5):579-582.
[28] 刘冬冬, 杨东旭, 张子亚, 等. 基于常规测井和成像测井的致密储层裂缝识别方法:以准噶尔盆地吉木萨尔凹陷芦草沟组为例. 岩性油气藏, 2019, 31(3):76-85. LIU D D, YANG D X, ZHANG Z Y, et al. Fracture identification for tight reservoirs by conventional and imaging logging:A case study of Permian Lucaogou Formation in Jimsar Sag, Junggar Basin. Lithologic Reservoirs, 2019, 31(3):76-85.
[29] 牛超群, 安丰全, 牛华, 等. 测井曲线高分辨率处理. 北京:地质出版社, 1999:6-12. NIU C Q, AN F Q, NIU H, et al. High-resolution processing of log curves. Beijing:Geological Publishing House, 1999:6-12.
[1] BAI Yubin, LI Mengyao, ZHU Tao, ZHAO Jingzhou, REN Haijiao, WU Weitao, WU Heyuan. Geochemical characteristics of source rocks and evaluation of shale oil “sweet spot”of Permian Fengcheng Formation in Mahu Sag [J]. Lithologic Reservoirs, 2024, 36(6): 110-121.
[2] HONG Zhibin, WU Jia, FANG Peng, YU Jinyang, WU Zhengyu, YU Jiaqi. Heterogeneity of soluble organic matter in shale and occurrence state of shale oil under nanoconfinement [J]. Lithologic Reservoirs, 2024, 36(6): 160-168.
[3] WANG Zixin, LIU Guangdi, YUAN Guangjie, YANG Henglin, FU Li, WANG Yuan, CHEN Gang, ZHANG Heng. Characteristics and reservoir control of source rocks of Triassic Chang 7 member in Qingcheng area,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(5): 133-144.
[4] CHENG Yan, WANG Bo, ZHANG Tongyao, QI Yumin, YANG Jilei, HAO Peng, LI Kuo, WANG Xiaodong. Oil and gas migration characteristics of lithologic reservoirs of Neogene Minghuazhen Formation in Bozhong A-2 area,Bozhong Sag [J]. Lithologic Reservoirs, 2024, 36(5): 46-55.
[5] ZHANG Lei, LI Sha, LUO Bobo, LYU Boqiang, XIE Min, CHEN Xinping, CHEN Dongxia, DENG Caiyun. Accumulation mechanism of overpressured lithologic reservoirs of the third member of Paleogene Shahejie Formation in northern Dongpu Sag [J]. Lithologic Reservoirs, 2024, 36(4): 57-70.
[6] DONG Rou, LI Kun, YIN Jihang, XUE Yuheng, JIANG Tao, XU Guosheng. Spatial-temporal differential evolution model and reservoir control effect of Cenozoic extensional and strike-slip superimposed faults in Bodong Sag [J]. Lithologic Reservoirs, 2024, 36(3): 106-116.
[7] ZHU Kangle, GAO Gang, YANG Guangda, ZHANG Dongwei, ZHANG Lili, ZHU Yixiu, LI Jing. Characteristics of deep source rocks and hydrocarbon accumulation model of Paleogene Shahejie Form ationin Qingshui subsag,Liaohe Depression [J]. Lithologic Reservoirs, 2024, 36(3): 146-157.
[8] FENG Bin, HUANG Xiaobo, HE Youbin, LI Hua, LUO Jinxiong, LI Tao, ZHOU Xiaoguang. Reconstruction of source-to-sink system of the third member of Paleogene Shahejie Formation in Miaoxibei area,Bohai Bay Basin [J]. Lithologic Reservoirs, 2024, 36(3): 84-95.
[9] HE Wenyuan, ZHAO Ying, ZHONG Jianhua, SUN Ningliang. Characteristics and significance of micron pores and micron fractures in shale oil reservoirs of Cretaceous Qingshankou Formation in Gulong sag,Songliao Basin [J]. Lithologic Reservoirs, 2024, 36(3): 1-18.
[10] SHAO Wei, ZHOU Daorong, LI Jianqing, ZHANG Chengcheng, LIU Tao. Key factors and favorable exploration directions for oil and gas enrichment in back margin sag of thrust nappe in Lower Yangtze [J]. Lithologic Reservoirs, 2024, 36(3): 61-71.
[11] CAO Jiangjun, WANG Xi, WANG Liuwei, LI Cheng, SHI Jian, CHEN Zhaobing. Characteristics and main controlling factors of interbedded shale oil reservoirs of Triassic Chang 7 member in Heshui area,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(3): 158-171.
[12] LIU Renjing, LU Wenming. Mechanism and field practice of enhanced oil recovery by injection-production coupling in fault block reservoirs [J]. Lithologic Reservoirs, 2024, 36(3): 180-188.
[13] BAI Xuefeng, LI Junhui, ZHANG Dazhi, WANG Youzhi, LU Shuangfang, SUI Liwei, WANG Jiping, DONG Zhongliang. Geological characteristics and enrichment conditions of shale oil of Jurassic Lianggaoshan Formation in Yilong-Pingchang area,Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(2): 52-64.
[14] DENG Yuan, CHEN Xuan, QIN Jianhua, LI Yingyan, HE Jixiang, TAO Xin, YIN Taiju, GAO Yang. Paleogeomorphology and favorable reservior distribution of the first member of Permian Lucaogou Formation in Jimsar Sag [J]. Lithologic Reservoirs, 2024, 36(1): 136-144.
[15] HU Wangshui, GAO Feiyue, LI Ming, GUO Zhijie, WANG Shichao, LI Xiangming, LI Shengming, JIE Qiong. Fine characterization of reservoir units of Paleogene Shahejie Formation in Langgu Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2023, 35(5): 92-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Sijing,HUANG Peipei,WANG Qingdong,LIU Haonian,WU Meng,ZOU Mingliang. The significance of cementation in porosity preservation in deep-buried sandstones[J]. Lithologic Reservoirs, 2007, 19(3): 7 -13 .
[2] LIU Zhen,CHEN Yanpeng,ZHAO Yang,HAO Qi,XU Xiaoming,CHANG Mai. Distribution and controlling factors of hydrocarbon reservoirs in continental fault basins[J]. Lithologic Reservoirs, 2007, 19(2): 121 -127 .
[3] DING Chao,GUO Lan,YAN Jifu. Forming conditions of Chang 6 reservoir in Anding area of Zichang Oilfield[J]. Lithologic Reservoirs, 2009, 21(1): 46 -50 .
[4] LI Yanshan,ZHANG Zhansong,ZHANG Chaomo,CHEN Peng. Application of mercury injection data to Chang 6 reservoir classification in Changqing area[J]. Lithologic Reservoirs, 2009, 21(2): 91 -93 .
[5] LUO Peng,LI Guorong,SHI Zejin,ZHOU Dazhi,TANG Hongwei,ZHANG Deming. Analysis of sequence stratigraphy and sedimentary facies of M aokou Formation in southeastern Sichuan[J]. Lithologic Reservoirs, 2010, 22(2): 74 -78 .
[6] ZUO Guoping, TU Xiaolong, XIA Jiufeng. Study on volcanic reservoir types in Subei exploration area[J]. Lithologic Reservoirs, 2012, 24(2): 37 -41 .
[7] WANG Feiyu. Method to improve producing degree of thermal recovery horizontal wells and its application[J]. Lithologic Reservoirs, 2010, 22(Z1): 100 -103 .
[8] YUAN Yunfeng,CAI Ye,FAN Zuochun,JIANG Yiyang,QIN Qirong, JIANG Qingping. Fracture characteristics of Carboniferous volcanic reservoirs in Hongche fault belt of Junggar Basin[J]. Lithologic Reservoirs, 2011, 23(1): 47 -51 .
[9] YUAN Jianying, FU Suotang, CAO Zhenglin, YAN Cunfeng,ZHANG Shuichang, MA Dade. Multi-source hydrocarbon generation and accumulation of plateau multiple petroleum system in Qaidam Basin[J]. Lithologic Reservoirs, 2011, 23(3): 7 -14 .
[10] GENG Yanfei, ZHANG Chunsheng, HAN Xiaofeng, YANG Dachao. Study on formation mechanism of low resistivity gas bearing reservoir in Anyue-Hechuan area[J]. Lithologic Reservoirs, 2011, 23(3): 70 -74 .
TRENDMD: