Lithologic Reservoirs ›› 2025, Vol. 37 ›› Issue (5): 166-177.doi: 10.12108/yxyqc.20250515

• PETROLEUM EXPLORATION • Previous Articles    

Source-to-sink system of Paleogene in Huizhou Sag of Pearl River Mouth Basin and its control on reservoir

YAN Yuyang1, XIONG Lianqiao2, HE Youbin1, CHEN Ying2, ZHAO Zhongxiang1, LIU Shengqian1, LUO Jinxiong1, FENG Bin3   

  1. 1. School of Geosciences, Yangtze University, Wuhan 430100, China;
    2. China National Offshore Oil Corporation, Beijing 100028, China;
    3. Changqing Branch, China National Logging Corporation, Xi'an 710000, China
  • Received:2025-02-15 Revised:2025-03-30 Published:2025-09-06

Abstract: Paleogene tectonic evolution of Huizhou Sag in Pearl River Mouth Basin is complex,and the sourceto-sink elements are variable. Based on data obtained from drilling,seismic,petrographic thin section,detrital zircon geochronology,the source-to-sink system and its control on reservoir was studied. The results show that: (1)Three types of source-to-sink systems developed in Paleogene of Huizhou Sag:the low uplift fault-trough type,the intra-depression transfer zone type,and the extra-depression transfer zone type. The parent rocks of the low uplift fault-trough type source-to-sink system were mainly the granite basement within the basin,transported through the same-direction fault troughs,and developed small-scale braided river deltas. The parent rocks of the intra-depression transfer zone type source-to-sink system were mainly the granite basement,transported via the transfer zone,and developed medium-scale braided river deltas. Affected by the fjord topography,they occasionally superimposed with the adjacent fan deltas sedimentary bodies. The extra-depression transfer zone type source-to-sink system was mainly sourced from the external water system,with a long transport distance and only a small amount of internal source mixing,developed large-scale braided river deltas.(2)The scale and physical properties of reservoirs in the study area are jointly controlled by parent rock composition,transport distance,transport channel morphology,sedimentary facies,and paleogeomorphology of the sedimentary period. (3)There are three types of high-quality reservoirs:the endogenous dissolution type,the mixed-source convergence type,and the low-uplift beach-bar type. The reservoir physical properties of the mixed-source convergence type at the junction of the exogenous transfer zone and the low uplift within the basin are the best.

Key words: source-to-sink system, low uplift fault-trough, intra-depression transfer zone, extra-depression transfer zone, braided river delta, Wenchang Formation, Enping Formation, Paleogene, Huizhou Sag, Pearl River Mouth Basin

CLC Number: 

  • TE122.2
[1] 高抒. 美国《洋陆边缘科学计划2004》述评[J]. 海洋地质与第四纪地质,2005,25(1):119-123. GAO Shu. Comments on the"NSF Margins Program Science Plans 2004"[J]. Marine Geology & Quaternary Geology,2005, 25(1):119-123.
[2] ALLEN P A. Form landscapes into geological history[J]. Nature, 2008,451(17):274-276.
[3] SØMME T O,HANSEN W H,MARTINSEN O J,et al. Relationships between morphological and sedimentological parameters in source-to-sink systems:A basis for predicting semiquantitative characteristics in subsurface systems[J]. Basin Research,2009,21(4):361-387.
[4] CARTER L,ORPIN A R,KUEHL S A. From mountain source to ocean sink-the passage of sediment across an active margin, waipaoa sedimentary system,New Zealand[J]. Marine Geology,2010,270(1/2/3/4):1-10.
[5] 徐长贵. 陆相断陷盆地源-汇时空耦合控砂原理:基本思想、概念体系及控砂模式[J]. 中国海上油气,2013,25(4):1-11. XU Changgui. Controlling sand principle of source-sink coupling in time and space in continental rift basins:Basic idea, conceptual systems,and controlling sand models[J]. China Offshore Oil and Gas,2013,25(4):1-11.
[6] 林畅松,夏庆龙,施和生,等. 地貌演化、源-汇过程与盆地分析[J]. 地学前缘,2015,22(1):9-20. LIN Changsong,XIA Qinglong,SHI Hesheng,et al. Geomorphological evolution,source to sink system and basin analysis[J]. Earth Science Frontiers,2015,22(1):9-20.
[7] 董桂玉,何幼斌. 陆相断陷盆地基准面调控下的古地貌要素耦合控砂机制[J].石油勘探与开发,2016,43(4):529-539. DONG Guiyu,HE Youbin. Mechanism of sand body prediction in a continental rift basin by coupling paleo geomorphic elements under the control of base level[J]. Petroleum Exploration and Development,2016,43(4):529-539.
[8] 于兴河,姜辉,李胜利,等. 中国东部中、新生代陆相断陷盆地沉积充填模式及其控制因素:以济阳坳陷东营凹陷为例[J]. 岩性油气藏,2007,19(1):39-45. YU Xinghe,JIANG Hui,LI Shengli,et al. Depositional filling models and controlling factors on Mesozoic and Cenozoic fault basins of terrestrial in eastern China:A case study of Dongying Sag of Jiyang Depression[J]. Lithologic Reservoirs,2007,19(1):39-45.
[9] 朱红涛,徐长贵,朱筱敏,等. 陆相盆地源-汇系统要素耦合研究进展[J]. 地球科学,2017,42(11):1851-1870. ZHU Hongtao,XU Changgui,ZHU Xiaomin,et al. Advances of the source-to-sink units and coupling model research in continental basin[J]. Earth Science,2017,42(11):1851-1870.
[10] 杨丽莎,陈彬滔,马轮,等. 陆相湖盆坳陷期源-汇系统的要素特征及耦合关系:以南苏丹Melut盆地北部坳陷新近系Jimidi组为例[J]. 岩性油气藏,2021,33(3):27-38. YANG Lisha,CHEN Bintao,MA lun,et al. Element feature and coupling model of source-to-sink system in depression lacustrine basin:A case study of the Neogene Jimidi Formation in Melut Basin,South Sudan[J]. Lithologic Reservoirs,2021, 33(3):27-38.
[11] 刘震,陈艳鹏,赵阳,等. 陆相断陷盆地油气藏形成控制因素及分布规律概述[J]. 岩性油气藏,2007,19(2):121-127. LIU Zhen,CHEN Yanpeng,ZHAO Yang,et al. Distribution and controlling factors of hydrocarbon reservoirs in continental fault basins[J]. Lithologic Reservoirs,2007,19(2):121-127.
[12] 周立宏,肖敦清,蒲秀刚,等. 陆相断陷湖盆复式叠合油气成藏与优势相富集新模式:以渤海湾盆地歧口凹陷为例[J]. 岩性油气藏,2010,22(1):7-11. ZHOU Lihong,XIAO Dunqing,PU Xiugang,et al. New pattern of composite superimposed reservoirs and advantageous phase accumulation in continental rifted lake basin:A case study from Qikou Sag of Bohai Bay Basin[J]. Lithologic Reservoirs,2010,22(1):7-11.
[13] 杜晓峰,王清斌,庞小军,等. 渤中凹陷石南陡坡带东三段源汇体系定量表征[J]. 岩性油气藏,2018,30(5):1-10. DU Xiaofeng,WANG Qingbin,PANG Xiaojun,et al. Quantitative characterization of source-sink system of Ed3 in Shinan steep slope zone,Bozhong Depression[J]. Lithologic Reservoirs,2018,30(5):1-10.
[14] 刘强虎,朱筱敏,李顺利,等. 沙垒田凸起西部断裂陡坡型源- 汇系统[J]. 地球科学,2017,42(11):1883-1896. LIU Qianghu,ZHU Xiaomin,LI Shunli,et al. Source-to-sink system of the steep slope fault in the western Shaleitian uplift[J]. Earth Science,2017,42(11):1883-1896.
[15] 谈明轩,朱筱敏,张自力,等. 古"源-汇"系统沉积学问题及基本研究方法简述[J]. 石油与天然气地质,2020,41(5):1107-1118. TAN Mingxuan,ZHU Xiaomin,ZHANG Zili,et al. Summary of sedimentological issues and fundamental approaches in terms of ancient source-to-sink systems[J]. Oil & Gas Geology, 2020,41(5):1107-1118.
[16] 冯斌,黄晓波,何幼斌,等. 渤海湾盆地庙西北地区古近系沙河街组三段源-汇系统重建[J]. 岩性油气藏,2023,36(3):84-95. FENG Bin,HUANG Xiaobo,HE Youbin,et al. Reconstruction of source-to-sink system of the third member of Paleogene Shahejie Formation in Miaoxibei area,Bohai Bay Basin[J]. Lithologic Reservoirs,2023,36(3):84-95.
[17] 李顺利,朱筱敏,刘强虎,等. 沙垒田凸起古近纪源-汇系统中有利储层评价与预测[J]. 地球科学,2017,42(11):1994-2009. LI Shunli,ZHU Xiaomin,LIU Qianghu,et al. Evaluation and prediction of favorable reservoirs in source-to-sink systems of the Palaeogene,Shaleitian uplift[J]. Earth Science,2017,42(11):1994-2009.
[18] 庞小军,王清斌,解婷,等. 黄河口凹陷北缘古近系物源及其对优质储层的控制[J]. 岩性油气藏,2020,32(2):1-13. PANG Xiaojun,WANG Qingbin,XIE Ting,et al. Paleogene provenance and its control on high-quality reservoir in the northern margin of Huanghekou Sag[J]. Lithologic Reservoirs, 2020,32(2):1-13.
[19] 徐长贵,龚承林. 从层序地层走向源-汇系统的储层预测之路[J]. 石油与天然气地质,2023,44(3):521-538. XU Changgui,GONG Chenglin. Predictive stratigraphy:From sequence stratigraphy to source-to-sink system[J]. Oil & Gas Geology,2023,44(3):521-538.
[20] 谢玉洪. 珠江口盆地西部新近系海相低阻轻质油田的发现[J]. 中国工程科学,2011,13(5):16-22. XIE Yuhong. The new finding of Neogene marine low-resistivity light oil field in the western part of Pearl River Mouth Basin[J]. Strategic Study of CAE,2011,13(5):16-22.
[21] 许新明,陈胜红,王福国,等. 珠江口盆地恩平凹陷断层特征及其对新近系油气成藏的影响[J]. 现代地质,2014,28(3):543-550. XU Xinming,CHEN Shenghong,WANG Fuguo,et al. Structural features and its impacts on hydrcarbon accumulation of Neogene in Enping Sag,Pearl River Mouth Basin[J]. Geoscience, 2014,28(3):543-550.
[22] 李松峰,徐思煌,施和生,等. 珠江口盆地惠州凹陷古近系烃源岩特征及资源预测[J]. 地球科学-中国地质大学学报, 2013,38(1):112-120. LI Songfeng,XU Sihuang,SHI Hesheng,et al. Characteristics of Paleogene source rocks and prediction of petroleum resources in Huizhou Depression,Pearl River Mouth Basin[J]. Earth Science-Journal of China University of Geosciences,2013,38(1):112-120.
[23] 陈维涛,杜家元,施和生,等. 珠江口盆地惠西南地区复式油气成藏特征及富集规律[J]. 石油勘探与开发,2015,42(2):194-199. CHEN Weitao,DU Jiayuan,SHI Hesheng,et al. Compound hydrocarbon accumulation and enrichment in southwestern Huizhou area,Pearl River Mouth Basin,Southern China[J]. Petroleum Exploration and Development,2015,42(2):194-199.
[24] 罗东红,梁卫,李熙盛,等. 珠江口盆地陆丰13-1油田古近系恩平组突破及其重要意义[J]. 中国海上油气,2011,23(2):71-75. LUO Donghong,LIANG Wei,LI Xisheng,et al. A breakthrough at Paleogene Enping Formation and its important significance in Lufeng 13-1 oilfield,Pearl River Mouth Basin[J]. China Offshore Oil and Gas,2011,23(2):71-75.
[25] 贺勇,邱欣卫,雷永昌,等. 珠江口盆地陆丰13东洼新生代构造演化与油气成藏特征[J]. 岩性油气藏,2023,35(1):74-82. HE Yong,QIU Xinwei,LEI Yongchang,et al. Tectonic evolution and hydrocarbon accumulation characteristics of Cenozoic in eastern Lufeng 13 subsag,Pearl River Mouth Basin[J]. Lithologic Reservoirs,2023,35(1):74-82.
[26] 朱筱敏,黄捍东,代一丁,等. 珠江口盆地番禺4洼文昌组层序格架与沉积体系研究[J]. 岩性油气藏,2014,26(4):1-8. ZHU Xiaomin,HUANG Handong,DAI Yiding,et al. Study on depositional system and sequence framework of Wenchang Formation in Panyu 4 depression of the Pearl River Mouth Basin[J]. Lithologic Reservoirs,2014,26(4):1-8.
[27] 黄军立,张伟,刘力辉,等. 珠江口盆地番禺4洼古近系文昌组三元地震构形解释技术[J]. 岩性油气藏,2023,35(2):103-112. HUANG Junli,ZHANG Wei,LIU Lihui,et al. Ternary seismic configuration interpretation technology of Paleogene Wenchang Formation in Panyu 4 depression,Pearl River Mouth Basin[J]. Lithologic Reservoirs,2023,35(2):103-112.
[28] 徐长贵,高阳东,刘军,等. 南海东部富砂砾型大中型油气田发现与启示:以珠江口盆地惠州26洼古近系恩平组为例[J]. 石油勘探与开发,2024,51(1):14-27. XU Changgui,GAO Yangdong,LIU Jun,et al. Discovery and inspiration of large-and medium-sized glutenite-rich oil and gas fields in the eastern South China Sea:An example from Paleogene Enping Formation in Huizhou 26 subsag,Pearl River Mouth Basin[J]. Petroleum Exploration and Development, 2024,51(1):14-27.
[29] 彭光荣,王绪诚,陈维涛,等. 珠江口盆地惠州26洼东南缘古近系恩平组上段断-拗转换期源-汇系统及勘探意义[J]. 石油与天然气地质,2023,44(3):613-625. PENG Guangrong,WANG Xucheng,CHEN Weitao,et al. Sourceto-sink system during rifting-depression transition period and its exploration significance:A case study of the Upper Enping Formation at southeastern margin of Huizhou 26 sub-sag,Pearl River Mouth Basin[J]. Oil & Gas Geology,2023,44(3):613-625.
[30] 田立新. 珠江口盆地惠州凹陷转换体控沉-控储特性及其油气地质意义[J]. 地球科学,2021,46(11):4043-4056. TIAN Lixin. Sedimentary-reservoir characteristics under control of transfer model and implications for hydrocarbon exploration in Huizhou Depression,Pearl River Mouth Basin[J]. Earth Science,2021,46(11):4043-4056.
[31] 李一超,龚承林,邱欣卫,等. 珠江口盆地惠州凹陷古近纪源汇过程及其控储作用[J]. 地质论评,2024,70(4):1403-1418. LI Yichao,GONG Chenglin,QIU Xinwei,et al. Source-to-sink processes and their controls on the reservoirs of the Paleogene Huizhou Sag in Pearl River Mouth Basin[J]. Geological Review,2024,70(4):1403-1418.
[32] 林璐,蔡俊杰,刘杰,等. 构造转换带源汇系统控储作用:以珠江口盆地惠州凹陷惠州26转换带为例[J]. 西安石油大学学报(自然科学版),2024,39(3):21-33. LIN Lu,CAI Junjie,LIU Jie,et al. Control of source-sink system of transfer zone on reservoir quality:A case study from Huizhou 26 transfer zone in Huizhou Sag of Pearl River Mouth Basin[J]. Journal of Xi'an Shiyou University(Natural Science Edition),2024,39(3):21-33.
[33] 雷超,任建业,张静. 南海构造变形分区及成盆过程[J]. 地球科学-中国地质大学学报,2015,40(4):744-762. LEI Chao,REN Jianye,ZHANG Jing. Tectonic province divisions in the South China Sea:implications for basin geodynamics[J]. Earth Science-Journal of China University of Geosciences,2015,40(4):744-762.
[34] WANG Pengcheng,LI Sanzhong,SUO Yanhui,et al. Structural and kinematic analysis of Cenozoic rift basins in South China Sea:A synthesis[J]. Earth-Science Reviews,2021,216:103522.
[35] 施和生,于水明,梅廉夫,等. 珠江口盆地惠州凹陷古近纪幕式裂陷特征[J]. 天然气工业,2009,29(1):35-37. SHI Hesheng,YU Shuiming,MEI Lianfu,et al. Features of Paleogene episodic rifting in Huizhou fault depression in the Pearl River Mouth Basin[J]. Natural Gas Industry,2009,29(1):35-37.
[36] 李康. 珠江口盆地惠州A/B构造带神狐组火山岩喷发-成山过程研究[D]. 长春:吉林大学,2023. LI Kang. Study on volcanic eruption-orogeny process of Shenhu Formation in Huizhou A/B structural belt,Pearl River Mouth Basin[D]. Changchun:Jilin University,2023.
[37] WANG Pengcheng,LI Sanzhong,SUO Yanhui,et al. Plate tectonic control on the formation and tectonic migration of Cenozoic basins in northern margin of the South China Sea[J]. Geoscience Frontiers,2020,11(4):1231-1251.
[38] TANG Xu,YU Yixin,ZHANG Xiangtao,et al. Multiphase faults activation in the southwest Huizhou Sag,Pearl River Mouth Basin:Insights from 3D seismic data[J]. Marine and Petroleum Geology,2023,152:106257.
[39] 施和生,杜家元,梅廉夫,等. 珠江口盆地惠州运动及其意义[J]. 石油勘探与开发,2020,47(3):447-461. SHI Hesheng,DU Jiayuan,MEI Lianfu,et al. Huizhou movement and its significance in Pearl River Mouth Basin,China[J]. Petroleum Exploration and Development,2020,47(3):447-461.
[40] 鲁宝亮,王璞珺,张功成,等. 南海北部陆缘盆地基底结构及其油气勘探意义[J]. 石油学报,2011,32(4):580-587. LU Baoliang,WANG Pujun,ZHANG Gongcheng,et al. Basement structures of an epicontinental basin in the northern South China Sea and their significance in petroleum prospect[J]. Acta Petrolei Sinica,2011,32(4):580-587.
[41] 杜文波,朱荣伟,熊量莉,等. 珠江口盆地恩平凹陷恩平组物源体系分析及未来大洋钻探建议[J]. 地质学报,2022,96(8):2788-2799. DU Wenbo,ZHU Rongwei,XIONG Liangli,et al. Analysis of provenance systems of the Enping Formation in the Enping Sag,Pearl River Mouth Basin,and future ocean drilling proposals[J]. Acta Geologica Sinica,2022,96(8):2788-2799.
[42] 王维,叶加仁,杨香华,等. 珠江口盆地惠州凹陷古近纪多幕裂陷旋回的沉积物源响应[J]. 地球科学-中国地质大学学报,2015,40(6):61-71. WANG Wei,YE Jiaren,YANG Xianghua,et al. Sediment provenance and depositional response to multistage rifting,Paleogene,Huizhou Depression,Pearl River Mouth Basin[J]. Earth Science-Journal of China University of Geosciences,2015,40(6):61-71.
[43] 崔宇驰,曹立成,乔培军,等. 南海北部古近纪沉积物碎屑锆石U-Pb年龄及物源演化[J]. 地球科学,2018,43(11):4169-4179. CUI Yuchi,CAO Licheng,QIAO Peijun,et al. Provenance evolution of Paleogene sequence(northern South China Sea)based on detrital zircon U-Pb dating analysis[J]. Earth Science, 2018,43(11):4169-4179.
[44] 阙晓铭,舒誉,汪旭东,等. 珠一坳陷古近纪物源特征及其沉积演化:来自碎屑锆石年龄的指示[J]. 地球科学,2024,49(7):2373-2387. QUE Xiaoming,SHU Yu,WANG Xudong,et al. Provenance characteristics and sedimentary evolution of Zhu I Depression in Paleogene:indications from detrital zircon ages[J]. Earth Science,2024,49(7):2373-2387.
[45] 周子强,朱红涛,刘强虎,等. 南海北部湾盆地协调-非协调供源样式与沉积交互作用耦合响应:以涠西南凹陷C洼为例[J]. 地球科学,2022,47(7):2521-2535. ZHOU Ziqiang,ZHU Hongtao,LIU Qianghu,et al. Coupled response of concordant-discordant input systems and depositional interactions within Beibuwan Basin,South China Sea:A case study from C Sag,Weixinan Depression[J]. Earth Science, 2022,47(7):2521-2535.
[46] 孙晓猛,张旭庆,张功成,等. 南海北部新生代盆地基底结构及构造属性[J]. 中国科学:地球科学,2014,44(6):1312- 1323. SUN Xiaomeng,ZHANG Xuqing,ZHANG Gongcheng,et al. The basement structure and structural properties of the Cenozoic basins in the northern South China Sea[J]. Scientia Sinica(Terrae), 2014,44(6):1312-1323.
[47] 汤家富,戴圣潜. 华南地区基底组成与构造演化及其对成岩成矿的控制[J]. 地学前缘,2016,23(4):109-128. TANG Jiafu,DAI Shengqian. Composition and tectonic evolution of precambrian basement in South China and their control in diagenesis and mineralization[J]. Earth Science Frontiers, 2016,23(4):109-128.
[48] LIU Chang,CLIFT P D,CARTER A,et al. Controls on modern erosion and the development of the Pearl River drainage in the Late Paleogene[J]. Marine Geology,2017,394:52-68.
[49] 曾智伟,朱红涛,杨香华,等. 珠江口盆地白云凹陷恩平组物源转换及沉积充填演化[J]. 地球科学,2017,42(11):1936-1954. ZENG Zhiwei,ZHU Hongtao,YANG Xianghua,et al. Provenance transformation and sedimentary evolution of Enping Formation,Baiyun Sag,Pearl River Mouth Basin[J]. Earth Science, 2017,42(11):1936-1954.
[1] ZHENG Xin, JIANG Donghui, LI Kun, ZHUANG Jianjian, ZHANG Chuanyun, YANG Chao, YUAN Zhongpeng, WANG Jiaqi. Sand control patterns of fault-landforms-sedimentary slope break and their significance for oil and gas exploration: A case study of the northern section of Baochu slope zone in Xihu Sag,East China Sea Basin [J]. Lithologic Reservoirs, 2025, 37(4): 95-104.
[2] CHEN Jiaxu, CHEN Changwei, LIU Guoquan, ZOU Leiluo, DONG Xiaowei, LIU Chuan, YANG Fei, ZHONG Wei. Crude oil filling characteristics and hydrocarbon accumulation model of the second member of Paleogene Kongdian Formation in the deep subsag zone of Cangdong Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2025, 37(4): 136-146.
[3] CHEN Huaiyi, LI Long, BAI Bing, YUE Junpei, KANG Rong, ZHANG Xingqiang. Characteristics and reservoir control of the strike-slip salt arch belt of Shahejie fourth Member Formation of Paleogene system in Laizhou Bay Depression,Bohai Bay Basin [J]. Lithologic Reservoirs, 2025, 37(3): 120-128.
[4] LI Xiang, FU Lei, WEI Pu, LI Junfei, XU Gang, CAO Qianqian, ZHONG Yang, WANG Zhenpeng. Restoration of sedimentary paleogeography and its control on sedimentary system: A case study of the Triassic Baikouquan Formation in Shixi area of Junggar Basin [J]. Lithologic Reservoirs, 2025, 37(2): 38-48.
[5] ZHU Wenqi, ZAN Chunjing, ZHANG Ying, WANG Tao, SHI Zhaowen, BA Lixia, CHEN Liang, JI Hancheng. Characteristics and genetic mechanisms of anomalous high-porosity zones of the Paleogene Dongying Formation in western sub-sag of the Bozhong Sag [J]. Lithologic Reservoirs, 2025, 37(2): 70-80.
[6] HU Xin, ZHU Xiaomin, JIN Xuling, HUANG Cheng, ZHOU Yue, CHENG Changling, XIU Jinlei, REN Xincheng. Sedimentary characteristics of the shallow-water braided river delta of Jurassic Qigu Formation in Yongjin area, Junggar Basin [J]. Lithologic Reservoirs, 2025, 37(2): 115-126.
[7] XUE Hui, YE Dashuai, GUO Yuemiao, CHEN Ketong, WU Jianping, XU Mengting, LI Yawen. Meandering river sedimentary characteristics and its control on reservoir of Paleogene Dong 3 Member in Qingyuan area, Baoding Sag, Bohai Bay Basin [J]. Lithologic Reservoirs, 2025, 37(2): 139-152.
[8] QU Xingyu. Sequence stratigraphy division and petroleum geological significance in the middle submember of the third member of Shahejie Formation in Liangdong area, Dongying Sag [J]. Lithologic Reservoirs, 2025, 37(2): 166-177.
[9] HU Xinling, RONG Huanqing, YANG Wei, ZHANG Zaichang, QI Zhixian. Logging identification and application of lacustrine dolomite in the fourth member of the Shahejie Formation in the Bamianhe area of Dongying Sag [J]. Lithologic Reservoirs, 2025, 37(1): 13-23.
[10] LIU Zhifeng, ZHU Xiaoer, LIU Guangdi, WANG Xiang, LI Zekun, WU Xuan, LIANG Yuyang. Study on the difference of petroleum accumulation between Paleogene and Neogene in the western Bozhong Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2025, 37(1): 78-89.
[11] CHEN Xiao, MIAO Yun, LI Wei, XIE Mingying, SHI Hao, WANG Weifeng. Calculation method for reasonable oil-water well ratio in the edge water drive offshore sandstone oilfield [J]. Lithologic Reservoirs, 2025, 37(1): 194-200.
[12] ZHOU Ziqiang, ZHU Zhengping, PAN Renfang, DONG Yu, JIN Jineng. Simulation and prediction of tight sandstone reservoirs based on waveform facies-controlled inversion:A case study from the second member of Paleogene Kongdian Formation in southern Cangdong sag, Huanghua Depression [J]. Lithologic Reservoirs, 2024, 36(5): 77-86.
[13] ZHANG Lei, LI Sha, LUO Bobo, LYU Boqiang, XIE Min, CHEN Xinping, CHEN Dongxia, DENG Caiyun. Accumulation mechanism of overpressured lithologic reservoirs of the third member of Paleogene Shahejie Formation in northern Dongpu Sag [J]. Lithologic Reservoirs, 2024, 36(4): 57-70.
[14] TIAN Ya, LI Junhui, CHEN Fangju, LI Yue, LIU Huaye, ZOU Yue, ZHANG Xiaoyang. Tight reservoir characteristics and favorable areas prediction of Lower Cretaceous Nantun Formation in central fault depression zone of Hailar Basin [J]. Lithologic Reservoirs, 2024, 36(4): 136-146.
[15] FANG Xuqing, ZHONG Qi, ZHANG Jianguo, LI Junliang, MENG Tao, JIANG Zaixing, ZHAO Haibo. Cyclostratigraphy analysis and stratigraphic division of lower Sha-3 member of Paleogene in Zhanhua Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2024, 36(3): 19-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
TRENDMD: