Lithologic Reservoirs ›› 2025, Vol. 37 ›› Issue (6): 151-161.doi: 10.12108/yxyqc.20250614

• PETROLEUM EXPLORATION • Previous Articles     Next Articles

Current geostress logging evaluation of tight reservoir in the fourth member of Triassic Xujiahe Formation in Yuanba area, northeastern Sichuan Basin

LI Chunyang1, WANG Boli2,3, YAN Xiao1, LI Kesai3,4, DENG Hucheng3,4, SU Jinyi1, WU Yajun1, YE Tairan1   

  1. 1. Sinopec Southwest Oil & Gas Field Exploration and Development Research Institute, Chengdu 610041, China;
    2. Research Center of Geotechnical Engineering Technology, Chengdu University of Technology, Chengdu 610031, China;
    3. National Key Laboratory of Oil and Gas Reservoir Geology and Development Engineering, Chengdu University of Technology, Chengdu 610059, China;
    4. Energy College, Chengdu University of Technology, Chengdu 610059, China
  • Received:2025-04-22 Revised:2025-06-29 Online:2025-11-01 Published:2025-11-07

Abstract: Yuanba area in northeastern Sichuan Basin has been subjected to multi-stage tectonic stress since Triassic, with complex coupling characteristics of faults, folding and geostress. Accurate evaluation of current geostress has become one of the key factors for the efficient development of gas reservoir. Based on the data from dipole shear waves, electrical imaging, multi-caliper, and conventional well logging, the current geostress logging evaluation of the fourth member of Triassic Xujiahe Formation in Yuanba area was carried out, and the spatiotem-poral sequence of structural deformation was redefined. The results show that: (1) Since Yanshanian period, Yuanba area in northeastern Sichuan Basin has primarily experienced NW-SE compression and thrusting during LateMiddle Yanshanian, followed by NE-SW compression and thrusting during Early-Middle Himalayan. This tectonic history resulted in the current structure framework of NE-trending structure superposition, NW-oriented modification, and multiple stages fault development with diverse orientations.(2) In the fourth member of Triassic XujiaheFormation of Yuanba area, the maximum horizontal principal stress(σH)ranges from 110 MPa to 140 MPa, the minimum horizontal principal stress(σh)ranges from 80 MPa to 100 MPa, and the vertical principal stress(σV)mainly ranges from 105 MPa to 125 MPa. The relationship of these three principal stress(σH > σV > σh)exhibits a strike-slip stress state, with the regional principal stress direction being NWW-SEE.(3) The geostress is generally controlled by burial depth, and the release of fault stress adjusts the distribution characteristics of geostress.Vertically, mudstone in the middle section of the fourth member of Triassic Xujiahe Formation is developed, and the overall magnitude of geostress in the upper part is higher due to the creep deformation of the mudstone. The research results can provide reference for the selection of sweet spots in gas field geological engineering, analysis of the effectiveness of natural fractures, and artificial fracturing of reservoirs.

Key words: tectonic evolution, tight reservoir, current geostress, rock mechanic parameter, logging evaluation, Xujiahe Formation, Triassic, Yuanba area, northeastern Sichuan Basin

CLC Number: 

  • TE122
[1] HUANG Yanqing, LIU Zhongqun, WANG Ai, et al. Types and distribution of tight sandstone gas sweet spots of the third member of Upper Triassic Xujiahe Formation in Yuanba area, Sichuan Basin[J]. Lithologic Reservoirs, 2023, 35(2): 21-30. 黄彦庆, 刘忠群, 王爱, 等. 四川盆地元坝地区上三叠统须家河组三段致密砂岩气甜点类型与分布[J]. 岩性油气藏, 2023, 35(2): 21-30.
[2] FAN Lingxiao, LIU Junlong, LI Shengyu, et al. Development laws and controlling factors of natural fractures in Xujiahe Formation inTongjiang area, northeastern Sichuan[J]. Fault-Block Oil & Gas Field, 2024, 31(4): 580-588. 范凌霄, 刘君龙, 李胜玉, 等. 川东北通江地区须家河组天然裂缝发育规律及控制因素[J]. 断块油气田, 2024, 31(4): 580-588.
[3] HUANG Tao, LIU Yan, HE Jianhua, et al. Evaluation method and engineering application of in-situ stress of deep tight sandstone reservoir in the second member of Xujiahe Formation in Xiaoquan-Fenggu area, western Sichuan[J]. Geology in China, 2024, 51(1): 89-104. 黄滔, 刘岩, 何建华, 等. 川西孝泉-丰谷地区须二段深层致密砂岩储层地应力大小评价方法及其工程应用[J]. 中国地质, 2024, 51(1): 89-104.
[4] ZHANG Jun, MOU Jinzhi, PAN Zhejun, et al. Discussion and prospects of the development on measurement while drilling technology in oil and gas wells[J]. Petroleum Science Bulletin, 2024, 9(2): 240-259. 张军, 牟晋智, 潘哲君, 等. 巴西圆盘拉伸强度测试在岩石力学中的发展综述及新见解[J]. 石油科学通报, 2024, 9(2): 240-259.
[5] YANG Donghui. Research on in-situ stress measurement method and application based on Kaiser effect of drilling core[D]. Beijing: China University of Mining & Technology(Beijing), 2019. 杨东辉. 基于钻孔岩芯Kaiser效应的地应力测试方法与应用研究[D]. 北京: 中国矿业大学(北京), 2019.
[6] XU Xiaochun. A research of earth stress and rock strength parameter in hydraulic fracture[D]. Jingzhou: Yangtze University, 2012. 徐晓春. 水力压裂中地应力及岩石强度参数的研究[D]. 荆州: 长江大学, 2012.
[7] WEI Shanbin, ZANG Desheng, WAN Xi, et al. Sleeve fracturing wellbore stress testing[J]. Well Construction Technology, 1997, 18(1): 25-27. 魏善斌, 臧德胜, 万禧, 等. 套筒致裂井壁应力测试[J]. 建井技术, 1997, 18(1): 25-27.
[8] ZHAO Xuyang, GUO Haimin, LI Zixuan, et al. Modeling of insitu stress field and rock mechanics parameters based on logging shear wave prediction[J]. Fault-Block Oil & Gas Field, 2021, 28(2): 235-240. 赵旭阳, 郭海敏, 李紫璇, 等. 基于测井横波预测的地应力场及岩石力学参数建模[J]. 断块油气田, 2021, 28(2): 235-240.
[9] TANG Rong, LI Jinxi, LUO Chao, et al. Differences in crustal stress direction in the southern section of the Huayingshan fault zone in Sichuan Basin: Insights from in situ borehole image logging[J]. Journal of Geomechanics, 2024, 30(4): 547-562. 唐荣, 李金玺, 罗超, 等. 四川盆地华蓥山断裂带南段地应力方向的差异: 来自钻孔成像测井的启示[J]. 地质力学学报, 2024, 30(4): 547-562.
[10] XING Zimeng, LI Ruixue, DENG Hucheng, et al. Simulation and zoning evaluation of in-situ stress field within ultra-deep tight sandstone reservoirs in thrust-nappe structures of Bozi-Dabei area, Tarim Basin[J]. Petroleum Geology & Experiment, 2025, 47(2): 296-310. 邢梓萌, 李瑞雪, 邓虎成, 等. 塔里木盆地博孜-大北逆冲推覆带超深层致密砂岩地应力场模拟及分区评价[J]. 石油实验地质, 2025, 47(2): 296-310.
[11] CONG Ping, YAN Jianping, JING Cui, et al. Logging evaluation and distribution characteristics of fracturing grade in shale gas reservoir: A case study from Wufeng Formation and Longmaxi Formation in X area, southern Sichuan Basin[J]. Lithologic Reservoirs, 2021, 33(3): 177-188. 丛平, 闫建平, 井翠, 等. 页岩气储层可压裂性级别测井评价及展布特征: 以川南X地区五峰组-龙马溪组为例[J]. 岩性油气藏, 2021, 33(3): 177-188.
[12] QIN Qirong, ZHU Mengyue, FAN Cunhui, et al. Structural features and analysis and genetic mechanism of Xujiahe Formation in the center of Yuanba area, Sichuan Basin[J]. Reservoir Evaluation and Development, 2017, 7(2): 1-6. 秦启荣, 朱梦月, 范存辉, 等. 四川盆地元坝中部须家河组构造形迹解析及成因机制[J]. 油气藏评价与开发, 2017, 7(2): 1-6.
[13] LI Zhiwu, SONG Tianhui, WANG Zijian, et al. Strike variation evolution of the basin-mountain system in western Sichuan Longmenshan as recorded by deformation, exhumation and deposition and discussion on the period of key structural transformation[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2021, 48(3): 257-282. 李智武, 宋天慧, 王自剑, 等. 川西-龙门山盆山系统走向差异演化的变形、隆升和沉积记录及关键构造变革期讨论[J]. 成都理工大学学报(自然科学版), 2021, 48(3): 257-282.
[14] ZHANG Hui, GUAN Da, XIANG Xuemei, et al. Prediction for fractured tight sandstone reservoir of Xu 4 member in eastern Yuanba area, northeastern Sichuan Basin[J]. Lithologic Reservoirs, 2018, 30(1): 133-139. 章惠, 关达, 向雪梅, 等. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133-139.
[15] ZHOU Zhiheng. Reservoirs characteristics and factors controlling the physical properties of the sandstone in the fourth member of Xujiahe Formation in the Bazhong area, northeastern Sichuan Basin[D]. Beijing: China University of Petroleum (Beijing), 2020. 周志恒. 川东北巴中地区须四段砂岩储层特征及物性控制因素[D]. 北京: 中国石油大学(北京), 2020.
[16] JIA Lichun. Experimental investigation on dynamic and static Biot coefficients of transversely isotropic shale[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(Suppl 2): 4130-4139. 贾利春. 横观各向同性页岩动、静态有效应力系数试验研究[J]. 岩石力学与工程学报, 2023, 42(增刊2): 4130-4139.
[17] XU Bo, WANG Zhenhua, SONG Ting, et al. Logging evaluation method of fracturability of tight sandstone reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(6): 57-64. 徐波, 王振华, 宋婷, 等. 致密砂岩储层可压裂性测井评价方法[J]. 油气地质与采收率, 2024, 31(6): 57-64.
[18] WANG Yingwei, WANG Linsheng, QIN Jianhua, et al. Log evaluation method of rock mechanics and in-situ stress characteristics of tight conglomerate formations[J]. Well Logging Technology, 2021, 45(6): 624-629. 王英伟, 王林生, 覃建华, 等. 致密砾岩储层岩石力学参数及地应力测井评价方法研究[J]. 测井技术, 2021, 45(6): 624-629.
[19] PENG Da, XIAO Fusen, RAN Qi, et al. Inversion of rock physics parameters based on KT model fluid substitution[J]. Lithologic Reservoirs, 2018, 30(5): 82-90. 彭达, 肖富森, 冉崎, 等. 基于KT模型流体替换的岩石物理参数反演方法[J]. 岩性油气藏, 2018, 30(5): 82-90.
[20] MA Zhonggao. Experimental investigation into Biot's coefficient and rock elastic moduli[J]. Oil & Gas Geology, 2008, 29 (1): 135-140. 马中高. Biot系数和岩石弹性模量的实验研究[J]. 石油与天然气地质, 2008, 29(1): 135-140.
[21] XIA Hongquan, PENG Meng, SONG Erchao. Calculating methods and application of rock anisotropic Biot coefficient[J]. Well Logging Technology, 2019, 43(5): 478-483. 夏宏泉, 彭梦, 宋二超. 岩石各向异性Biot系数的获取方法及应用[J]. 测井技术, 2019, 43(5): 478-483.
[22] HUANG Tao, LI Ruixue, DENG Hucheng, et al. Prediction and zoning evaluation of in-situ stress field in deep tight sandstone reservoirs of Western Sichuan Depression, Sichuan Basin: A case study of the second member of Xujiahe Formation in Xinchang and Fenggu area[J]. Petroleum Geology & Experiment, 2024, 46(6): 1198-1214. 黄滔, 李瑞雪, 邓虎成, 等. 四川盆地川西坳陷深部致密砂岩储层地应力场预测及分区评价: 以新场-丰谷地区须家河组二段为例[J]. 石油实验地质, 2024, 46(6): 1198-1214.
[23] TONG Kailing, CAI Hongyan, LI Jinxi, et al. Present stress orientations and controlling factors of shale reservoirs in LZ region, Sichuan Basin: Example of the first member of Longmaxi Formation[J]. Science Technology and Engineering, 2023, 23 (8): 3224-3236. 佟恺林, 蔡鸿燕, 李金玺, 等. 四川LZ页岩储层现今地应力方向及主控因素: 以龙一段为例[J]. 科学技术与工程, 2023, 23 (8): 3224-3236.
[24] FU Jianwei, LI Hongnan, SUN Zhongchun, et al. Logging identification and controlling factors of present stress orientations of the coarse-grained clastic reservoirs in Mabei region, Junggar Basin[J]. Oil & Gas Geology, 2015, 36(4): 605-611. 付建伟, 李洪楠, 孙中春, 等. 玛北地区砂砾岩储层地应力方向测井识别及主控因素[J]. 石油与天然气地质, 2015, 36 (4): 605-611.
[25] WU Wei, SHAO Guanghui, GUI Pengfei, et al. Fracture effectiveness evaluation and reservoir quality classification based on electrical imaging data: A case study of Cretaceous in Yaerxia Oilfield[J]. Lithologic Reservoirs, 2019, 31(6): 102-108. 吴伟, 邵广辉, 桂鹏飞, 等. 基于电成像资料的裂缝有效性评价和储集层品质分类: 以鸭儿峡油田白垩系为例[J]. 岩性油气藏, 2019, 31(6): 102-108.
[26] ZHANG Xiaoju, HE Jianhua, XU Qinglong, et al. Distribution characteristics and disturbance mechanism of present in-situ stress field in the second member of Xujiahe Formation in Hechuan area[J]. Mineralogy and Petrology, 2022, 42(4): 71-82. 张小菊, 何建华, 徐庆龙, 等. 合川地区须二段现今地应力场分布特征与扰动机制研究[J]. 矿物岩石, 2022, 42(4): 71-82.
[27] HUANG Jixin, PENG Shimi, WANG Xiaojun, et al. Application of imaging logging data in the research of fracture and ground stress[J]. Acta Petrolei Sinica, 2006, 27(6): 65-69. 黄继新, 彭仕宓, 王小军, 等. 成像测井资料在裂缝和地应力研究中的应用[J]. 石油学报, 2006, 27(6): 65-69.
[28] WANG Meng, LI Mingtao, ZHANG Zhiqiang, et al. The method of evaluation ground stress based on cross dipole acoustic[J]. Offshore Oil, 2019, 39(3): 66-70. 王猛, 李明涛, 张志强, 等. 基于交叉偶极子阵列声波资料精细评价地应力方法[J]. 海洋石油, 2019, 39(3): 66-70.
[29] CAI Zhidong, LI Qing, WANG Chong, et al. Prediction of strata depth and hydrocarbon attributes by using VSP multi-wave data[J]. Lithologic Reservoirs, 2019, 31(1): 106-112. 蔡志东, 李青, 王冲, 等. 利用VSP多波资料预测地层深度及油气属性[J]. 岩性油气藏, 2019, 31(1): 106-112.
[30] LI Yong, HE Jianhua, CAO Feng, et al. Evaluation of in-situ stress orientations and rotational mechanical mechanisms in deep shale reservoirs: A case study of the Longmaxi Formation's first member and Wufeng Formation in the Yongchuan shale gas field, southern Sichuan Basin[J]. Geology in China, 2025, 52(1): 78-94. 李勇, 何建华, 曹峰, 等. 深层页岩储层现今地应力方向评价及其扰动力学机制: 以川南永川区块五峰组-龙马溪组一段为例[J]. 中国地质, 2025, 52(1): 78-94.
[1] JIANG Mengya, JIANG Zhongfa, LIU Longsong, WANG Jiangtao, CHEN Hailong, WANG Xueyong, LIU Hailei. Hydrocarbon geochemical characteristics and source of Triassic Baijiantan Formation in Dabasong uplift, Junggar Basin [J]. Lithologic Reservoirs, 2025, 37(6): 71-87.
[2] SU Shuai, QU Hongjun, YIN Hu, ZHANG Leigang, YANG Xiaofeng. Fractal characteristics of pore throat structure and their influence on reservoir physical properties of tight sandstone reservoir: A case study of Triassic Chang 8 member in Fuxian area, Ordos Basin [J]. Lithologic Reservoirs, 2025, 37(6): 88-98.
[3] MIAO Zhiwei, LI Shikai, ZHANG Wenjun, XIAO Wei, LIU Ming, YU Tong. Seismic prediction technology for complex network fractures in fault-fracture reservoir of tight sandstones: A case study of Triassic Xujiahe Formation in northern Sichuan Basin [J]. Lithologic Reservoirs, 2025, 37(6): 140-150.
[4] ZHAO Baoyin, YANG Xiaoli, XU Yingxin, MENG Lingjian, CUI Zixuan, WANG Fanglu, LIU Jianlun, YU Fusheng. Characteristics and reservoir control of Cenozoic tectonic evolution of Nanpu Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2025, 37(5): 59-69.
[5] XIE Huiwen, ZHANG Liang, WANG Bin, LUO Haoyu, ZHANG Ke, ZHANG Guowei, LI Ling, SHEN Lin. Characteristics of Triassic paleostructure and their control on sedimentation in Kuqa Depression,Tarim Basin [J]. Lithologic Reservoirs, 2025, 37(3): 13-22.
[6] XIAO Wenhua, YANG Jun, YAN Baonian, WANG Jianguo, LI Shaoyong, MA Qilin, LI Zonglin, XUE Huanzhao. Characteristics and main controlling factors of Triassic Chang 8 tight sandstone reservoir in Huanqing area,Ordos Basin [J]. Lithologic Reservoirs, 2025, 37(3): 23-32.
[7] DENG Gaoshan, DONG Xuemei, YU Haitao, ZHANG Jie, YUE Xiwei, REN Junmin, JIANG Tao. Hydrocarbon accumulation conditions and exploration potential of Triassic Baikouquan Formation in Shawan Sag,Junggar Basin [J]. Lithologic Reservoirs, 2025, 37(3): 59-72.
[8] YANG Xu, BAI Mingsheng, GONG Hanbo, LI Gao, TAO Zuwen. Characteristics and quantitative prediction of structural fractures in the second member of Triassic Xujiahe Formation in Xinchang area, western Sichuan Basin [J]. Lithologic Reservoirs, 2025, 37(3): 73-83.
[9] ZHANG Zhaohui, ZHANG Jiaosheng, LIU Jungang, ZOU Jiandong, ZHANG Jianwu, LIAO Jianbo, LI Zhiyong, ZHAO Wenwen. Lithofacies identification using conventional logging curves and its exploration significance,Triassic Chang 81 sub-member,Longdong area,Ordos Basin [J]. Lithologic Reservoirs, 2025, 37(3): 95-107.
[10] LIU Yingbao, LI Yuanhao, ZHAI Wenbin, ZHAO Wenxuan, LI Zhe, YANG Longhua, GUO Yaqian. Types and genetic models of sand bodies in shallow water delta front of extremely gentle slope lake basin:A case study of Chang 81 submember of Triassic in Haotan area,Ordos Basin [J]. Lithologic Reservoirs, 2025, 37(3): 140-152.
[11] LI Xiang, FU Lei, WEI Pu, LI Junfei, XU Gang, CAO Qianqian, ZHONG Yang, WANG Zhenpeng. Restoration of sedimentary paleogeography and its control on sedimentary system: A case study of the Triassic Baikouquan Formation in Shixi area of Junggar Basin [J]. Lithologic Reservoirs, 2025, 37(2): 38-48.
[12] LUO Bing, WEN Huaguo, LIAO Yisha, ZHANG Bing, YAO Yongjun, WEN Siyu, YANG Kai. Shale reservoirs characteristics and favorable areas distribution of the second member of Permian Wujiaping Formation in northeastern Sichuan Basin [J]. Lithologic Reservoirs, 2025, 37(1): 1-12.
[13] LIANG Feng, CAO Zhe. Characteristics,formation environment and enrichment model of Triassic Chang 7 shale oil reservoir in Huachi area,Ordos Basin [J]. Lithologic Reservoirs, 2025, 37(1): 24-40.
[14] YANG Jie, ZHANG Wenping, DING Chaolong, SHI Cunying, MA Yunhai. Characteristics and main controlling factors of tight gas reservoirs in the second member of Triassic Xujiahe Formation,central Sichuan Basin [J]. Lithologic Reservoirs, 2025, 37(1): 137-148.
[15] WU Jia, ZHAO Weiwei, LIU Yuchen, LI Hui, XIAO Ying, YANG Di, WANG Jianan. Shale rock-reservoir collocation and hydrocarbon enrichment rule of Triassic Chang 7 member in Yan’an area,Ordos Basin [J]. Lithologic Reservoirs, 2025, 37(1): 170-181.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
TRENDMD: