Lithologic Reservoirs ›› 2025, Vol. 37 ›› Issue (6): 180-190.doi: 10.12108/yxyqc.20250617

• PETROLEUM ENGINEERING AND OIL & GAS FIELD DEVELOPMENT • Previous Articles     Next Articles

Development characteristics and reasonable injection-production pressuredifference of SAGD under different injection-production well patternsin bottom water reservoirs

ZHAN Shengyun1, TONG Jianxiang2, WANG Zhendong2, BAI Yuting1, WANG Taichao1   

  1. 1. State Key Laboratory of Offshore Oil Efficient Development, CNOOC Research Institute Co., Ltd., Beijing 100028, China;
    2. School of Petroleum Engineering, China University of Petroleum(Beijing), Beijing 102249, China
  • Received:2024-10-22 Revised:2025-01-12 Online:2025-11-01 Published:2025-11-07

Abstract: SAGD production law of inclined dual horizontal well in the bottom water heavy oil reservoir of block A in Bohai Oilfield is complex, with high remaining oil saturation and high water cut.Through the physical simulation experiment, the characteristics of temperature field change and production laws of the forward and in clined horizontal wells during the SAGD development process were analyzed. Combined with the numerical simulation method, the influence of injection-production pressure difference on SAGD production efficiency is discussed, and the reasonable injection-production pressure difference range of horizontal well SAGD is clarified. The results show that : (1) SAGD steam chamber of the forward dual horizontal well extends to both sides of the model, and the oil drainage capacity of the inclined plane on both sides of the steam chamber is balanced.However, the expansion speed of the SAGD steam chamber and the oil drainage capacity of the inclined plane ofthe inclined dual horizontal well are unbalanced, resulting in a smaller steam chamber coverage area and lower recovery degree. The production process of dual horizontal well SAGD can be divided into three stages: oil production rate rising stage, stable production stage and falling stage. In the stable production stage, the steam chamber is in the lateral expansion stage, which is dominated by gravity drainage.(2) The SAGD production well in block A of Bohai Oilfield has a water avoidance distance of 10 m. Numerical simulation results show that: when the bottom water energy is less than 10 times and the bottom water has no effect on the production efficiency of horizontal well SAGD. In the stable production stage of dual horizontal well SAGD, with the increase of injection-production pressure difference, the steam injection and liquid production gradually increase, the oil production first increases and then gradually decreases, the cumulative oil-steam ratio first increases and then decreases, and both the sub-cool value and the height of steam-liquid interface decrease gradually. When there is no steam channeling in the production well, the oil production of the forward horizontal well is greater than that of the inclined horizontal well. The reasonable injection-production pressure difference of SAGD in forward and inclined horizontal wells is 20-30 kPa and 30-40 kPa, respectively.

Key words: heavy oil, bottom water reservoir, inclined dual horizontal well, SAGD development, injection-production pressure difference, physical simulation, numerical simulation, Bohai Oilfield

CLC Number: 

  • TE345
[1] JIA Chengzao. Oil sand resource status and reserve evaluationmethod[M]. Beijing: Petroleum Industry Press, 2007. 贾承造. 油砂资源状况与储量评估方法[M]. 北京: 石油工业出版社, 2007.
[2] XU Zhengxiao, LI Songyan, LI Binfei, et al. A review of development methods and EOR technologies for carbonate reservoirs[J]. Petroleum Science, 2020, 17(4): 990-1013.
[3] DONG Xiaohu, LIU Huiqing, CHEN Zhangxin. Hybrid enhancedoil recovery processes for heavy oil reservoirs[M]. Amsterdam: Elsevier Science, 2021.
[4] CHEN Xiangyu, LI Jianyuan, CHEN Yu. Heat transfer of steamcavity edge in SAGD process considering reservoir physicalproperty changes[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 379-384. 陈翔宇, 李建元, 陈宇. 考虑储层物性变化的SAGD开发蒸汽腔前缘传热研究[J]. 油气藏评价与开发, 2023, 13(3): 379-384.
[5] YU Yang, LIU Shangqi, LIU Yang. Review of research on recovery process and mechanism of steam-assisted gravity drainage[J]. Science Technology and Engineering. 2021, 21(12): 4744-4751. 余洋, 刘尚奇, 刘洋. 蒸汽辅助重力泄油开发过程及机理研究综述[J]. 科学技术与工程, 2021, 21(12): 4744-4751.
[6] DING Chao, WANG Pan, QIN Yadong, et al. SAGD production performance prediction model based on unsteady heattransfer[J]. Lithologic Reservoirs, 2023, 35(1): 160-168. 丁超, 王攀, 秦亚东, 等. 基于非稳态热传导的SAGD开发指标预测模型[J]. 岩性油气藏, 2023, 35(1): 160-168.
[7] QIN Wenchong. Analysis of steam channeling causes and countermeasures in dual-level well SAGD[J]. China New Technology and New Products, 2023, 28(10): 42-45. 秦文冲. 双水平井SAGD汽窜原因分析及对策研究[J]. 中国新技术新产品, 2023, 28(10): 42-45.
[8] LIU Hao, CHENG Linsong, XIONG Hao, et al. The effects ofinjector-producer pressure difference on dual-well SAGD recovery[J]. Petroleum Science Bulletin, 2016, 1(3): 363-375. 刘昊, 程林松, 熊浩, 等. 注采压差对双水平井SAGD开发的影响[J]. 石油科学通报, 2016, 1(3): 363-375.
[9] SUN Qiji. Study on three dimensional seepage mechanism andproductivity mode for SAGD vertical well and horizontal wellcombination of heavy oil production[D]. Daqing: Northeast Petroleum University, 2015. 孙启冀. 直井水平井组合SAGD稠油开发三维渗流机理及产能研究[D]. 大庆: 东北石油大学, 2015.
[10] CHEN Guangwei, WANG Qingtao, WANG Xinwei, et al. Applicability analysis of single horizontal well SAGD in heavy oilreservoir and optimization of injection-production scheme[J]. Journal of China University of Petroleum(Edition of NaturalScience), 2021, 45(6): 136-143. 陈广卫, 王庆涛, 王新伟, 等. 稠油油藏单水平井SAGD技术适用性分析及注采方案优化[J]. 中国石油大学学报(自然科学版), 2021, 45(6): 136-143.
[11] SUN Pengxiao, LIU Yingxian. Development status and thermaldevelopment difficulties and strategy of Bohai heavy oil reservoirs[J]. China Offshore Oil and Gas, 2023, 35(2): 85-92. 孙鹏霄, 刘英宪. 渤海稠油油藏开发现状及热采开发难点与对策[J]. 中国海上油气, 2023, 35(2): 85-92.
[12] QIN Zhengshan, HE Yongming, DING Yangyang, et al. Waterinvasion performance and main controlling factors for edge-watergas reservoirs[J]. Lithologic Reservoirs, 2024, 36(4): 178-188. 秦正山, 何勇明, 丁洋洋, 等. 边水气藏水侵动态分析方法及水侵主控因素[J]. 岩性油气藏, 2024, 36(4): 178-188.
[13] ZHANG Jilei, LUO Xianbo, ZHANG Yunlai, et al. Improvingwater injection efficiency of transfer injection well in heavy oilbottom water reservoir[J]. Lithologic Reservoirs, 2019, 31(4): 141-148. 张吉磊, 罗宪波, 张运来, 等. 提高稠油底水油藏转注井注水效率研究[J]. 岩性油气藏, 2019, 31(4): 141-148.
[14] CHEN Jiajie. Study on expansion law of steam chamber for thedevelopment of cyclic steam stimulation to SAGD in heavy oilreservoir with edge and bottom water[D]. Beijing: China University of Petroleum(Beijing), 2023. 陈嘉杰. 边底水稠油油藏蒸汽吞吐转SAGD开发蒸汽腔扩展规律研究[D]. 北京: 中国石油大学(北京), 2023.
[15] GAO Jiawei. Study on mechanism of CO2-assisted water control for seam stimulation horizontal well with bottom water [D]. Beijing: China University of Petroleum(Beijing), 2020. 高嘉伟. 底水稠油油藏蒸汽吞吐水平井CO2辅助控水增产机理研究[D]. 北京: 中国石油大学(北京), 2020.
[16] LI Tingli, ZHANG Mo, WU Tingting, et al. Research on development strategies of different types of heavy oil reservoirs inthe Bohai Sea[J]. Natural Gas and Oil, 2023, 41(6): 110-116. 李廷礼, 张墨, 吴婷婷, 等. 渤海不同类型稠油油藏开发策略研究[J]. 天然气与石油, 2023, 41(6): 110-116.
[17] ZHANG Yunlai, CHEN Jianbo, ZHOU Haiyan, et al. Quantitative characterization of sweep coefficient of water drive in horizontal well for offshore bottom water reservoir[J]. Lithologic Reservoirs, 2020, 32(6): 146-153. 张运来, 陈建波, 周海燕, 等. 海上底水油藏水平井水驱波及系数定量表征[J]. 岩性油气藏, 2020, 32(6): 146-153.
[18] YUAN Xiao. Research on EOR mechanism and optimizationof SAGD with different well types in thin-layer oil sands reservoir[D]. Changzhou: Changzhou University, 2022. 袁潇. 薄层油砂不同井型SAGD提高采收率机理与优化研究[D]. 常州: 常州大学, 2022.
[19] LIU Hao. Heat and mass transfer model for expanding solventSAGD process and its application[D]. Beijing: China University of Petroleum(Beijing), 2019. 刘昊. 溶剂辅助SAGD地层传质传热模型及应用[D]. 北京: 中国石油大学(北京), 2019.
[20] ZHOU Jiuning, FAN Zifei, BAO Yu, et al. Numerical simulation study on SAGD development law of multi-lateral horizontal oil sand wells and evaluation of field development results [J]. China Petroleum Exploration, 2023, 28(3): 145-159. 周久宁, 范子菲, 包宇, 等. 油砂多分支水平井SAGD开发规律数值模拟研究及现场开发效果评价[J]. 中国石油勘探, 2023, 28(3): 145-159.
[21] DU Binghui, LIN Botao, ZHANG Runxue, et al. Technology tostimulate Xinjiang Fengcheng super-heavy oil reservoir containing muddy interlayers by drilling multilateral wells[J]. Xinjiang Oil & Gas, 2022, 18(4): 44-51. 杜炳辉, 林伯韬, 张润雪, 等. 新疆风城超稠油储层多分支井夹层改造技术[J]. 新疆石油天然气, 2022, 18(4): 44-51.
[22] ZHOU Zhijun, ZHANG Qi, YI Xi, et al. Optimization of lateralmorphology of SAGD fishbone multilateral wells and recoverychange law[J]. Special Oil & Gas Reservoirs, 2024, 31(1): 57-65. 周志军, 张祺, 衣犀, 等. 鱼骨型分支井SAGD分支形态优化及采出程度变化规律[J]. 特种油气藏, 2024, 31(1): 57-65.
[23] LIU Pengfei, WANG Kunjian, LI Jin, et al. Research on application of herringbone horizontal branch well in Bohai Oilfield [J]. China Offshore Oil and Gas, 2021, 33(3): 147-152. 刘鹏飞, 王昆剑, 李进, 等. 鱼骨型水平分支井在渤海油田的应用研究[J]. 中国海上油气, 2021, 33(3): 147-152.
[24] DU Xulin, DAI Zong, XIN Jing, et al. Three-dimensional waterflooding physical simulation experiment of horizontal well inheavy oil reservoir with strong bottom water[J]. Lithologic Reservoirs, 2020, 32(2): 141-148. 杜旭林, 戴宗, 辛晶, 等. 强底水稠油油藏水平井三维水驱物理模拟实验[J]. 岩性油气藏, 2020, 32(2): 141-148.
[25] DONG Xiaohu, WANG Jian, LIU Huiqing, et al. SAGD scaledphysical simulation experiment for oilsands reservoirs withhigh water-bearing layer[J]. Acta Petrolei Sinica, 2022, 43(5): 658-667. 东晓虎, 王剑, 刘慧卿, 等. 高含水层油砂SAGD相似物理模拟实验[J]. 石油学报, 2022, 43(5): 658-667.
[26] WEI Shaolei. Flow mechanism and production practice for theintegral process of SAGD using horizontal well pairs[D]. Beijing: China University of Petroleum(Beijing), 2015. 魏绍蕾. 双水平井组合SAGD开发全过程流动机理及应用[D]. 北京: 中国石油大学(北京), 2015.
[27] HUANG Shijun, XIONG Hao, YE Heng, et al. SAGD productivity prediction model considering the injector-producer pressure difference[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2017, 39(6): 101-108. 黄世军, 熊浩, 叶恒, 等. 考虑注采压差下SAGD产能预测模型[J]. 西南石油大学学报(自然科学版), 2017, 39(6): 101-108.
[28] YANG Yang. The characterization method of liquid level during steam assisted gravity drainage process with dual horizontal wells in oil sands[D]. Beijing: China University of Petroleum(Beijing), 2016. 杨阳. 油砂双水平井SAGD开发蒸汽腔汽液界面描述方法及应用[D]. 北京: 中国石油大学(北京), 2016.
[1] JIANG Shan, TANG Yongjian, JIAO Xiarong, LI Wenliang, HUANG Cheng, WANG Ze. Distribution law of remaining gas in condensate gas reservoirs in fault-controlled body of No. 4 fault zone in Shunbei Oilfield, Tarim Basin [J]. Lithologic Reservoirs, 2025, 37(4): 84-94.
[2] YANG Xu, BAI Mingsheng, GONG Hanbo, LI Gao, TAO Zuwen. Characteristics and quantitative prediction of structural fractures in the second member of Triassic Xujiahe Formation in Xinchang area, western Sichuan Basin [J]. Lithologic Reservoirs, 2025, 37(3): 73-83.
[3] ZHAO Ailin, LAI Qiang, FAN Ruiqi, WU Yuyu, CHEN Jie, YAN Shuanglan, ZHANG Jiawei, LIAO Guangzhi. Study on NMR response mechanism and pore structure evaluation method of basic volcanic rock:A case study of Permian Emeishan Basalt Formation in southwestern Sichuan Basin [J]. Lithologic Reservoirs, 2025, 37(3): 153-164.
[4] ZHANG Qinglong, MAO Yuanyuan, FENG Jiansong, YUAN Xuansheng, ZHOU Wei, ZHU Fujin, XUAN Lingling. Quantitative selection and application of well locations for encrypted wells in fractured-porosity carbonate rocks:A case study of Cambrian oil reservoirs in Tanghai Oilfield,Huanghua Depression,Bohai Bay Basin [J]. Lithologic Reservoirs, 2025, 37(3): 165-175.
[5] XU Youjie, REN Zongxiao, XIANG Zuping, FAN Xiaohui, YU Mengnan. Numerical well testing model of fractured well with complex fractures multi-well interference in heterogeneous tight gas reservoirs [J]. Lithologic Reservoirs, 2025, 37(3): 194-200.
[6] HE Yan, XU Weina, DANG Sisi, MOU Lei, LIN Shaoling, LEI Zhangshu. Genesis and exploration significance of calcareous intercalation of Jurassic Xishanyao Formation in Luliang area,Junggar Basin [J]. Lithologic Reservoirs, 2025, 37(1): 90-101.
[7] GUI Shiqi, LUO Qun, HE Xiaobiao, WANG Qianjun, WANG Shichen, WANG Liang. Main controlling factors and hydrocarbon accumulation model of Carboniferous reservoir in Chepaizi Uplift,Junggar Basin [J]. Lithologic Reservoirs, 2025, 37(1): 126-136.
[8] CHEN Xiao, MIAO Yun, LI Wei, XIE Mingying, SHI Hao, WANG Weifeng. Calculation method for reasonable oil-water well ratio in the edge water drive offshore sandstone oilfield [J]. Lithologic Reservoirs, 2025, 37(1): 194-200.
[9] CUI Chuanzhi, LI Jing, WU Zhongwei. Simulation of microscopic seepage characteristics of CO2 immiscible flooding under the effect of diffusion and adsorption [J]. Lithologic Reservoirs, 2024, 36(6): 181-188.
[10] TANG Shukai, GUO Tiankui, WANG Haiyang, CHEN Ming. Numerical simulation of fracture propagation law of in-fracture temporary plugging and diverting fracturing in tight reservoirs [J]. Lithologic Reservoirs, 2024, 36(4): 169-177.
[11] LIU Renjing, LU Wenming. Mechanism and field practice of enhanced oil recovery by injection-production coupling in fault block reservoirs [J]. Lithologic Reservoirs, 2024, 36(3): 180-188.
[12] BAO Hanyong, LIU Chao, GAN Yuqing, XUE Meng, LIU Shiqiang, ZENG Lianbo, MA Shijie, LUO Liang. Paleotectonic stress field and fracture characteristics of shales of Ordovician Wufeng Formation to Silurian Longmaxi Formation in southern Fuling area,Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(1): 14-22.
[13] YANG Zhaochen, LU Yingbo, YANG Guo, HUANG Chun, YI Dalin, JIA Song, WU Yongbin, WANG Guiqing. Pre-CO2 energy storage fracturing technology in horizontal wells for medium-deep heavy oil [J]. Lithologic Reservoirs, 2024, 36(1): 178-184.
[14] ZHAO Changhong, SUN Xinge, LU Yingbo, WANG Li, HU Pengcheng, XING Xiangrong, WANG Guiqing. Physical simulation experiment of steam chamber evolution in compound development of thin-layer ultra-heavy oil flooding and drainage [J]. Lithologic Reservoirs, 2023, 35(5): 161-168.
[15] QIAN Zhen, MAO Zhiqiang, ZHENG Wei, HUANG Yuanjun, CHEN Lifeng, ZENG Huiyong, LI Gang, SONG Ai. Experiment on profile control and water plugging of rubber particles in inter-well single fractured-vuggy reservoir [J]. Lithologic Reservoirs, 2023, 35(4): 161-168.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
TRENDMD: