Lithologic Reservoirs ›› 2026, Vol. 38 ›› Issue (1): 126-135.doi: 10.12108/yxyqc.20260111

• PETROLEUM EXPLORATION • Previous Articles    

A method for assessing fault lateral sealing based on high-resolution geological modeling: A case study of Archean buried hill reservoir in Xinglongtai structural belt of Liaohe Depression

LI Bin(), MIN Zhongshun, MENG Lingna, ZHANG Yuanli, YIN Jianfeng, ZHOU Peijie   

  1. Research Institute of Exploration and Development, PetroChina Liaohe Oilfield Branch, Panjin 124010, Liaoning, China
  • Received:2025-05-09 Revised:2025-08-05 Online:2026-01-01 Published:2026-01-23

Abstract:

Allan diagram analysis is of great significance for the study of fault sealing. Taking Archean buried hill hydrocarbon reservoir in Xinglongtai structural belt of Liaohe Depression as an example, an improved Allan diagram method based on high-resolution geological modeling technology was proposed to analyze fault sealing by integrating well logging, 3D seismic, and experimental analysis and testing data. The results show that: (1) The high-resolution geological model established based on the well-seismic integration can address the issue of missing well-location data. Based on a detailed analysis of lithology development and fracture-forming capability in various regions of the metamorphic buried hill, the high-resolution geological model can accurately depict the stratigraphic contact relationship and lithology distribution pattern on both sides of the fault. After manual inspection and adjustment, the final improved Allan diagram can be formed. (2) There are six lithology docking patterns on the fault plane in the study area. The docking patterns with good sealing properties include breccia-mudstone, migmatite-mudstone, migmatite-gneiss, migmatite-breccia, and breccia-breccia. The peripheral faults F3 and F5 in the area are completely sealed, and the altitude of the leakage point in the area is -4 390 m. (3) Cross-verification was carried out by combining the fuzzy mathematics method and the on-site fluid distribution. The analysis results of each region were highly consistent with the lateral fault sealing analyzed by the improved Allan diagram method, indicating that the method shows excellent applicability and accuracy in metamorphic buried hills and has high application value.

Key words: improved Allan diagram method, fault sealing, gas storage, high-resolution geological modeling, Archean buried hill, Xinglongtai structural belt, Liaohe Depression

CLC Number: 

  • TE122

Fig. 1

Location of Xinglongtai structural belt (a) and stratigraphic column (b) of Liaohe Depression"

Fig. 2

Schematic diagram of the principle of traditional Allan diagrams"

Fig. 3

Analysis process of improved Allan diagrams based on high-resolution geological modeling technology"

Table 1

Comprehensive information statistics of buried hill faults in the southern block of Xinglongtai structural belt, Liaohe Depression"



与地层
组合关系
断距/m 埋深/m
倾向 倾角/(°) 长度/m 与现今主应力关系/(°) 对盘岩性 对盘流体 断层泥
比率SGR
断面正应力/MPa
F3 反向式 200~300 4 700 EW S 65~75 6.30 30~45 泥岩 无油气 0.81 40~60
F4 反向式 250~800 4 600 EW N—NE 65~75 4.60 85~95 角砾岩、混合岩 薄层差油层 0.35 40~60
F5 反向式 150~400 4 600 NE W 65~75 3.20 0~5 泥岩、片麻岩、煌斑岩 无油气 0.41 40~60
F6 同向式 50~300 4 400 EW S 65~75 2.20 30~45 泥岩、角砾岩、混合岩 油水界面
一致
0.26 40~60

Table 2

Discrete membership functions and weighting coefficients for lateral sealing of buried hill faults in the southern block of Xinglongtai structural belt, Liaohe Depression"

影响因素 性质 隶属度 权重系数
断层性质 正断层 0.7 0.02
逆断层 1.0
与地层产状
组合关系
正向式断层 1.0 0.02
反向式断层 0
断层倾角/(°) > 50 0.3 0.02
< 50 1.0
断层埋深/m > 4 500 1.0 0.02
< 4 500 0.7
断层断距/m > 500 1.0 0.02
< 500 0.7
与最大主应力
夹角/(°)
垂直 1.0 0.05
夹角 0.7
平行 0.3
对盘岩性 储集岩 0 0.19
非储集岩 1.0
对盘流体性质 无油气显示 1.0 0.22
差油气层 0.8
油水界面不一致 0.4
油水界面一致 0
断层泥比率SGR > 0.60 1.0 0.19
0.30~0.60 0.5
< 0.30 0
断面正压力/MPa > 60 1.0 0.15
40~60 0.7
< 40 0.5

Table 3

Comprehensive evaluation criteria for lateral sealing of buried hills faults in the southern block Xinglongtai structural belt, Liaohe Depression"

侧向封闭性 封闭 不封闭
评判指标B > 0.50 < 0.50

Table 4

Fuzzy mathematics-based evaluation results of fault lateral sealing for buried hills in the southern block of Xinglongtai structural belt, Liaohe Depression"

断层 评判指标B 侧向封闭性
F3 0.91 封闭
F4 0.64 封闭
F5 0.83 封闭
F6 0.29 不封闭

Fig. 4

Process of establishing a high-precision tectonic model for buried hills in the southern block of Xinglongtai structural belt, Liaohe Depression"

Fig. 5

Lithology statistics for buried hills in the southern block of Xinglongtai structural belt, Liaohe Depression"

Fig. 6

Lithology-fracture density histogram of buried hills in the southern block Xinglongtai structural belt, Liaohe Depression"

Fig. 7

Lithology allocation plan for buried hills in the southern block of Xinglongtai structural belt, Liaohe Depression"

Fig. 8

Simplified lithology model for buried hills in the southern block of Xinglongtai structural belt, Liaohe Depression"

Fig. 9

Fine characterization for connection status of lithology cross-section of buried hills in the southern block of Xinglongtai structural belt, Liaohe Depression"

Fig. 10

Applications evaluation of improved Allan diagrams for buried hills in the southern block of Xinglongtai structural belt, Liaohe Depression"

Fig. 11

Profile of Archean reservoir in buried hills in the southern block of Xinglongtai structural belt, Liaohe Depression"

Fig. 12

Reservoir profile (a) and comparison of crude oil physical properties (b) of Archean in buried hills in the southern block of Xinglongtai structural belt, Liaohe Depression"

[1] 朱子恒, 任众鑫, 王照周, 等. 苏北盆地刘庄储气库密封性评价研究[J]. 油气藏评价与开发, 2024, 14(5):805-813.
ZHU Ziheng, REN Zhongxin, WANG Zhaozhou, et al. Sealing evaluation of Liuzhuang UGS in Subei Basin[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5):805-813.
[2] 张建国, 夏勇, 赵晨阳, 等. 鄂尔多斯盆地低渗透岩性气藏型地下储气库地质评价关键技术[J]. 天然气工业, 2023, 43(10):55-63.
ZHANG Jianguo, XIA Yong, ZHAO Chenyang, et al. Key technologies for geological evaluation of UGSs rebuilt from low-permeability lithological gas reservoirs in the Ordos Basin[J]. Natural Gas Industry, 2023, 43(10):55-63.
[3] 丁国生, 王云, 完颜祺琪, 等. 不同类型复杂地下储气库建库难点与攻关方向[J]. 天然气工业, 2023, 43(10):14-23.
DING Guosheng, WANG Yun, WANYAN qiqi, et al. Construction difficulties and research directions of various complex UGSs[J]. Natural Gas Industry, 2023, 43(10):14-23.
[4] 丁国生, 魏欢. 中国地下储气库建设20年回顾与展望[J]. 油气储运, 2020, 39(1):25-31.
DING Guosheng, WEI Huan. Review on 20 years UGS construction in China and the prospect[J]. Oil & Gas Storage and Transportation, 2020, 39(1):25-31.
[5] 郑雅丽, 孙军昌, 邱小松, 等. 油气藏型储气库地质体完整性内涵与评价技术[J]. 天然气工业, 2020, 40(5):94-103.
ZHENG Yali, SUN Junchang, QIU Xiaosong, et al. Connotation and evaluation technique of geological integrity of UGSs in oil-gas fields[J]. Natural Gas Industry, 2020, 40(5):94-103.
[6] 李进步, 夏勇, 王德龙, 等. 鄂尔多斯盆地低渗岩性气藏型储气库建库设计与运行优化关键技术[J]. 天然气地球科学, 2023, 34(8):1442-1451.
doi: 10.11764/j.issn.1672-1926.2023.03.005
LI Jinbu, XIA Yong, WANG Delong, et al. Key technologies of construction design and operation optimization for underground gas storage of low permeability lithologic gas reservoirs in Ordos Basin[J]. Natural Gas Geoscience, 2023, 34(8):1442-1451.
doi: 10.11764/j.issn.1672-1926.2023.03.005
[7] 吕志洲, 李旻, 田军, 等. 一种改进后的断裂封堵性研究方法:以龙门山冲断带为例[J]. 石油实验地质, 2012, 34(3):325-329.
LYU Zhizhou, LI Min, Tian Jun, et al. An improved research method on fault sealing capacity:Taking Longmenshan thrust belt as an example[J]. Petroleum Geology & Experiment, 2012, 34(3):325-329.
[8] 孟令东, 付晓飞, 王雅春, 等. 徐家围子断陷火山岩断层带内部结构与封闭性[J]. 石油勘探与开发, 2014, 41(2):150-157.
MENG Lingdong, FU Xiaofei, WANG Yachun, et al. Internal structure and sealing properties of the volcanic fault zones in Xujiaweizi Fault Depression,Songliao Basin,China[J]. Petroleum Exploration and Development, 2014, 41(2):150-157.
[9] 张新顺, 王建平, 李亚晶, 等. 断层封闭性研究方法评述[J]. 岩性油气藏, 2013, 25(2): 123-128.
ZHANG Xinshun, WANG Jianping, LI Yajing, et al. A comment on research methods of fault sealing capacity[J]. Lithologic Reservoirs, 2013, 25(2):123-128.
doi: 10.3969/j.issn.1673-8926.2013.02.022
[10] 任森林, 刘琳, 徐雷. 断层封闭性研究方法[J]. 岩性油气藏, 2011, 23(5):101-105.
REN Senlin, LIU Lin, XU Lei. Research methods of fault sealing[J]. Lithologic Reservoirs, 2011, 23(5):101-105.
doi: 10.3969/j.issn.1673-8926.2011.05.020
[11] 叶青, 王猛, 杨朝强, 等. 珠江口盆地琼海凸起文昌A区断层侧向封闭性综合评价[J]. 海相油气地质, 2018, 23(4):81-86.
YE Qing, WANG Meng, YANG Chaoqiang, et al. Comprehensive evaluation of fault lateral sealing ability in Wenchang A area,Qionghai Swell,Pearl River Mouth Basin[J]. Marine Origin Petroleum Geology, 2018, 23(4):81-86.
[12] 张丹凤, 方石, 邱善坤. 断层封启性的研究现状与发展方向[J]. 吉林大学学报(地球科学版), 2021, 51(1):65-80.
ZHANG Danfeng, FANG Shi, QIU Shankun. Current research states and development directions of fault sealing properties[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(1):65-80.
[13] 徐长贵, 周家雄, 杨海风, 等. 渤海湾盆地大型变质岩潜山油田勘探发现及地质意义[J]. 石油学报, 2023, 44(10):1587-1598.
doi: 10.7623/syxb202310001
XU Changgui, ZHOU Jiaxiong, YANG Haifeng, et al. Disco-very of large-scale metamorphic buried-hill oilfield in Bohai Bay Basin and its geological significance[J]. Acta Petrolei Sinica, 2023, 44(10):1587-1598.
doi: 10.7623/syxb202310001
[14] 汪泽成, 江青春, 王居峰, 等. 基岩油气成藏特征与中国陆上深层基岩油气勘探方向[J]. 石油勘探与开发, 2024, 51(1):31-43.
WANG Zecheng, WANG Qingchun, WANG Jufeng, et al. Hydrocarbon accumulation characteristics in basement reservoirs and exploration targets of deep basement reservoirs in onshore China[J]. Petroleum Exploration and Development, 2024, 51(1):31-43.
doi: 10.1016/S1876-3804(24)60003-0
[15] 刘国平, 董少群, 李洪楠, 等. 辽河盆地西部凹陷古潜山天然裂缝特征及其影响因素[J]. 石油与天然气地质, 2020, 41(3):525-533.
LIU Guoping, DONG Shaoqun, LI Hongnan, et al. Characteristics of natural fractures and their influencing factors in the paleo-buried-hill reservoirs of the Western Sag in the Liaohe Basin,China[J]. Oil & Gas Geology, 2020, 41(3):525-533.
[16] 赵婷婷, 罗小平, 吴飘, 等. 辽西低凸起JZ25-1S太古界潜山原油地球化学特征及来源分析[J]. 石油实验地质, 2020, 42(6):981-990.
ZHAO Tingting, LUO Xiaoping, WU Piao, et al. Geochemical characteristics and source analysis of crude oil from Archean buried hill JZ25-1S in Liaoxi Low Uplift[J]. Petroleum Geo-logy & Experiment, 2020, 42(6):981-990.
[17] ALLAN U S. Model for hydrocarbon migration and entrapment within faulted structures[J]. AAPG Bulletin, 1989, 73(7):803-811.
[18] KNIPE R J. Juxta position and seal diagrams to help analyze fault seals in hydrocarbon reservoirs[J]. AAPG Bulletin, 1997, 81(2):187-195.
[19] 张翥, 严恒, 汪新光, 等. 基于改进模糊综合评判法的断层封堵性综合评价[J]. 地球科学, 2024, 49(3):1144-1153.
ZHANG Zhu, YAN Heng, WANG Xinguang, et al. Comprehensive evaluation of fault sealing based on improved fuzzy comprehensive evaluation method[J]. Earth Science, 2024, 49(3):1144-1153.
[20] 张驰, 杨波, 胡忠贵, 等. 莱州湾凹陷断层封闭性评价[J]. 断块油气田, 2020, 27(6):734-738.
ZHANG Chi, YANG Bo, HU Zhonggui, et al. Evaluation of fault sealing ability of Laizhou Bay Sag[J]. Fault-Block Oil & Gas Field, 2020, 27(6):734-738.
[21] 赵凡. 辽河断陷兴隆台古潜山封盖条件研究[D]. 大庆: 东北石油大学, 2018.
ZHAO Fan. Study on the sealing condition of the Xinglongtai Buried Hill in Liaohe Rift[D]. Daqing: Northeast Petroleum University, 2018.
[22] 徐长贵. 渤海湾盆地天然气勘探新进展、未来方向与挑战[J]. 天然气工业, 2024, 44(1):72-85.
XU Changgui. Progress,future direction,and challenges of natural gas exploration in the Bohai Bay Basin[J]. Natural Gas Industry, 2024, 44(1):72-85.
[23] 施宁, 刘敬寿, 张冠杰, 等. 基底变质岩深部潜山储层构造裂缝发育特征及主控因素:以渤海湾盆地渤中B区块为例[J]. 石油实验地质, 2024, 46(4):799-811.
SHI Ning, LIU Jingshou, ZHANG Guanjie, et al. Characteristics and main controlling factors of structural fracture development in deep buried hill reservoirs of basement metamorphic rocks:A case study of B block,Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2024, 46(4):799-811.
[24] 王丽娟, 韩登林, 马良帅, 等. 渤海海域太古界潜山型储层特征及主控因素[J]. 岩性油气藏, 2025, 37(3):84-94.
doi: 10.12108/yxyqc.20250308
WANG Lijuan, HAN Denglin, MA Liangshuai, et al. Characte-ristics and main controlling factors of Archean buried hill reservoir in Bohai Sea[J]. Lithologic Reservoirs, 2025, 37(3):84-94.
doi: 10.12108/yxyqc.20250308
[25] 王蔚. 渤海海域太古宇变质岩潜山构造演化及其裂缝发育特征研究[D]. 长春: 吉林大学, 2024.
WANG Wei. Study on tectonic evolution and fracture development characteristics of Archean metamorphic buried hill in Bohai sea area[D]. Changchun: Jilin University, 2024.
[26] 郑华, 康凯, 刘卫林, 等. 渤海深层变质岩潜山油藏裂缝主控因素及预测[J]. 岩性油气藏, 2022, 34(3):29-38.
doi: 10.12108/yxyqc.20220303
ZHENG Hua, KANG Kai, LIU Weilin, et al. Main controlling factors and prediction of fractures in deep metamorphic buried hill reservoirs in Bohai Sea[J]. Lithologic Reservoirs, 2022, 34(3):29-38.
doi: 10.12108/yxyqc.20220303
[27] 朱博远, 张超谟, 张占松, 等. 渤中19-6太古界潜山复杂岩性储层矿物组分反演[J]. 岩性油气藏, 2020, 32(4):107-114.
doi: 10.12108/yxyqc.20200411
ZHU Boyuan, ZHANG Chaomo, ZHANG Zhansong, et al. Mineral component inversion of complex lithologic reservoirs in Bozhong 19-6 Archean buried hill[J]. Lithologic Reservoirs, 2020, 32(4):107-114.
doi: 10.12108/yxyqc.20200411
[1] XI Zhibo, LIAO Jianping, GAO Rongjin, ZHOU Xiaolong, LEI Wenwen. Tectonic evolution and hydrocarbon accumulation in northern Chenjia fault zone,Liaohe Depression [J]. Lithologic Reservoirs, 2024, 36(3): 127-136.
[2] YING Kaiying, CAI Chang'e, LIANG Yuqi, CHEN Hong, SHANG Wenliang, SU Guijiao. Vertical sealing of Paleogene faults and its control on reservoirs in Chaluhe fault depression, Yitong Basin [J]. Lithologic Reservoirs, 2023, 35(2): 136-143.
[3] LI Tian, DAI Zongyang, LI Yang, HUANG Lei, GONG Zhenchao, ZHAO Xiaoyang, ZHOU Xiaolong, HUANG Lan. Genesis of lacustrine dolomites of the fourth member of Paleogene Shahejie Formation in Leijia area, Western Liao Depression [J]. Lithologic Reservoirs, 2022, 34(2): 75-85.
[4] WANG Qiao, SONG Lixin, HAN Yajie, ZHAO Huimin, LIU Ying. Depositional system and sequence stratigraphy of the third member of Paleo-gene Shahejie Formation in Leijia area, Western Liaohe Depression [J]. Lithologic Reservoirs, 2021, 33(6): 102-113.
[5] ZHAO Qingfeng, ZHANG Jianguo, KANG Wenjun, WANG Siqi, JIANG Zaixing, DU Kefeng, HUANG Changwu. Characteristics of seismites and their geological significance of the upper fourth member of Shahejie Formation in Western Sag, Liaohe Depression [J]. Lithologic Reservoirs, 2019, 31(5): 24-33.
[6] LI Chen, FAN Tailiang, GAO Zhiqian, QIAO Xiaohui, FU Wei. High-resolution sequence stratigraphy of alluvial fan: a case from Guantao Formation in SAGD development zone of Du 84 block, Shuyi area, Liaohe Depression [J]. Lithologic Reservoirs, 2017, 29(3): 66-75.
[7] Cui Dian. Cemented sealing in Kexia fault zone in northwestern margin of Junggar Basin [J]. LITHOLOGIC RESERVOIRS, 2015, 27(6): 48-54.
[8] L IANG Mingliang, WANG Zuodong, ZHENG Jianjing, L I Xiaoguang, WANG Xiaofeng, QIAN Yu. Organic geochemistry characteristics of source rocks in Liaohe Depression [J]. Lithologic Reservoirs, 2014, 26(4): 110-116.
[9] SUN Honghua,LI Xuping,ZHONG Jianhua,FAN Wei, LIU Lei,ZHOU Jiao. Characteristics and controlling factors of tight sandstone reservoir of the third member of Shahejie Formation in the southern West Depression, Liaohe Basin [J]. Lithologic Reservoirs, 2013, 25(6): 53-61.
[10] ZHANG Xinshun, WANG Jianping, LI Yajing, WU Hongzhu. A comment on research methods of fault sealing capacity [J]. Lithologic Reservoirs, 2013, 25(2): 123-128.
[11] REN Sen-lin, LIU Lin, XU Lei. Research methods of fault sealing [J]. Lithologic Reservoirs, 2011, 23(5): 101-105.
[12] PENG Wenli,CUI Dian,WU Kongyou,LIU Zhenyu. Research on diagenetic sealing of Nanbaijiantan fault in northwestern margin of Junggar Basin [J]. Lithologic Reservoirs, 2011, 23(5): 43-48.
[13] ZHOU Xuhong, LI Jun, WANG Yanshan, ZHAO Jia, LI Dexing. Study on exploration potential of deep natural gas in Liaohe Depression [J]. Lithologic Reservoirs, 2011, 23(3): 23-28.
[14] GUO Yongqiang,LIU Luofu. Controlling factors of lithologic reservoirs of Sha 3 member in West Sag of Liaohe Depression [J]. Lithologic Reservoirs, 2009, 21(2): 19-23.
[15] CUI Yanmin, LU Zhengyuan, ZHONG Wei. Study on fault sealing in Fang 169 block of Zhaozhou Oilfield [J]. Lithologic Reservoirs, 2008, 20(3): 83-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
TRENDMD: