Lithologic Reservoirs ›› 2023, Vol. 35 ›› Issue (2): 136-143.doi: 10.12108/yxyqc.20230213

• PETROLEUM EXPLORATION • Previous Articles     Next Articles

Vertical sealing of Paleogene faults and its control on reservoirs in Chaluhe fault depression, Yitong Basin

YING Kaiying1,2, CAI Chang'e1,2, LIANG Yuqi1,2, CHEN Hong1,2, SHANG Wenliang1,2, SU Guijiao1,2   

  1. 1. Chongqing Key Laborotary of Complex Oil and Gas Field Exploration and Development, Chongqing University of Science & Technology, Chongqing 401331, China;
    2. School of Petroleum Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
  • Received:2022-04-25 Revised:2022-05-23 Published:2023-03-07

Abstract: Based on the data of logging and oil test, the vertical sealing of Paleogene faults controlling reservoir in Chaluhe fault depression of Yitong Basin was evaluated by using the method of normal pressure of fault plane. The results show that:(1) The present normal pressure of fault plane of oil and gas reservoirs can be calculated by the data of burial depth, average density of overlying strata and fault dip angle. In the Paleogene, the present normal pressure of Paleogene reservoirs in Chaluhe fault depression of Yitong Basin ranges from 13.3 MPa to 56.0 MPa, and the normal pressure during the reservoir forming period was 3.8-13.1 MPa, showing the characteristics of "ancient opening and present closing". As the greater the pressure on the fault plane, the tighter the fault, thus forming a vertical seal, otherwise open.(2) The minimum value of present normal pressure of fault plane of the reservoirs in the study area is 13.3 MPa, which is defined as the critical value of the vertical sealing of Chaluhe fault depression, and the present critical burial depth of the faults controlling reservoir is further determined to be 2 262 m.(3) The normal pressure of fault plane is positively correlated with the fault tightness index, the vertical sealing critical pressure value, critical burial depth and fault tightness index can be used to quantitatively evaluate the sealing ability of the faults controlling reservoir in the study area.(4) The fault can not only serve as the hydrocarbon migration pathway, but also provide shelter for the formation of reservoirs. The faults controlling reservoir of C43 reservoir in the northwestern margin of Chaluhe fault depression showed a vertical opening during the accumulation period, which coincided with the period of hydrocarbon generation and expulsion, with the function of connecting oil sources and migrating oil and gas. The faults controlling reservoir in well region C43-C48 are now in a vertical sealing state, which can effectively seal oil and gas.

Key words: fault sealing ability, normal pressure of fault plane, vertical sealing ability, critical pressure, critical burial depth, Paleogene, Chaluhe fault depression, Yitong Basin

CLC Number: 

  • TE122
[1] 吕延防, 王帅. 断层封闭性定量评价[J].大庆石油学院学报, 2010, 34(5):35-41. LYU Yanfang, WANG Shuai. Quantitative evaluation of fault lateral sealing[J]. Journal of Daqing Petroleum Institute, 2010, 34(5):35-41.
[2] 付广, 任述民, 赵荣. 利用声波时差资料研究断层垂向封闭性的方法[J].石油地球物理勘探, 1997, 32(5):724-730. FU Guang, REN Shumin, ZHAO Rong. A method for analyzing vertical sealing of fault by acoustilog data[J]. Oil Geophysical Prospecting, 1997, 32(5):724-730.
[3] SMITH D A. Theoretical consideration of sealing and non-sealing faults[J]. AAPG Bulletin, 1966, 50(2):363-371.
[4] ALLAN U S. Model for hydrocarbon migration and entrapment with in faulted structures[J]. AAPG Bulletin, 1989, 73(4):803-811.
[5] 张新顺, 王建平, 李亚晶, 等. 断层封闭性研究方法评述[J]. 岩性油气藏, 2013, 25(2):123-128. ZHANG Xinshun, WANG Jianping, LI Yajing, et al. A comment on research methods of fault sealing capacity[J]. Lithologic Reservoirs, 2013, 25(2):123-128.
[6] YIELDING G, FREEMAN B, NEEDHAM D T. Quantitative fault seal prediction[J]. AAPG Bulletin, 1997, 81(6):897-917.
[7] KNIPE R J. Juxtaposition and seal diagrams to help analyze fault seals in hydrocarbon reservoirs[J]. AAPG Bulletin, 1997, 81(2):187-195.
[8] 童亨茂. 断层开启与封闭的定量分析[J]. 石油与天然气地质, 1998, 19(3):215-220. TONG Hengmao. Quantitative analysis of fault opening and sealing[J]. Oil & Gas Geology, 1998, 19(3):215-220.
[9] BRETAN J, PETER B, GRAHAM Y. Using calibrated shale gouge ratio to estimate hydrocarbon column heights[J]. AAPG Bulletin, 2003, 87(3):397-413.
[10] 吕延防, 李国会, 王跃文, 等. 断层封闭性的定量研究方法[J]. 石油学报, 1996, 17(3):39-45. LYU Yanfang, LI Guohui, WANG Yuewen, et al. Quantitative analyses in fault sealing properties[J]. Acta Petrolei Sinica, 1996, 17(3):39-45.
[11] 付广, 宿碧霖, 历娜. 一种利用断层岩泥质含量判断断层侧向封闭性的方法及其应用[J].岩性油气藏, 2016, 28(2):101-106. FU Guang, XU Bilin, LI Na. A method of judging lateral sealing of fault by mudstone content of fault rock and its application[J]. Lithologic Reservoirs, 2016, 28(2):101-106.
[12] 刘震, 谭卓, 蔡东升, 等. 用断层面正压力法分析北部湾盆地涠西南凹陷断层垂向封闭性及其演化[J].地质科学, 2008, 43(4):695-711. LIU Zhen, TAN Zhuo, CAI Dongsheng, et al. Analysis on fault's vertical sealing and its evolution by normal pressure of fault surface method in the Weixianan Sag, Beibu Gulf Basin[J]. Chinese Journal of Geology, 2008, 43(4):695-711.
[13] 李浩, 吴金涛, 黄建廷, 等. 断层垂向封闭性定量分析及其在渤海湾盆地A油田中的应用[J]. 地质科技通报, 2020, 39(4):125-131. LI Hao, WU Jintao, HUANG Jianting, et al. Quantitative analysis of vertical sealing ability and its application in A oilfield of Bohai Bay Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(4):125-131.
[14] 田辉, 查明, 石新璞, 等. 断层紧闭指数的计算及其地质意义[J].新疆石油地质, 2003, 24(6):530-532. TIAN Hui, ZHA Ming, SHI Xinpu, et al. Calculation of fault tightness index and its significance for fault sealing[J]. Xinjiang Petroleum Geology, 2003, 24(6):530-532.
[15] ZHANG Likuan, LUO Xiaorong, VASSEUR G, et al. Evaluation of geological factors in characterizing fault connectivity during hydrocarbon migration:Application to the Bohai Bay Basin[J]. Marine and Petroleum Geology, 2011, 28(9):1634-1647.
[16] 张丹凤, 方石, 邱善坤. 断层封启性的研究现状与发展方向[J].吉林大学学报(地球科学版), 2021, 51(1):65-80. ZHANG Danfeng, FANG Shi, QIU Shankun. Current research states and development directions of fault sealing properties[J]. Journal of Jilin University(Earth Science Edition), 2021, 51(1):65-80.
[17] 杨静. 伊通盆地岔路河断陷波太凹陷奢岭组成藏条件研究[J].石油知识, 2019, 35(3):34-35. YANG Jing. Study on reservoir-forming conditions of Chaluhe fault depression Botai depression in Yitong Basin[J]. Petroleum Geology, 2019, 35(3):34-35.
[18] 江涛, 邱玉超, 宋立斌, 等. 伊通盆地西北缘断裂带的性质[J]. 现代地质, 2009, 23(5):860-864. JIANG Tao, QIU Yuchao, SONG Libin, et al. Fault nature of north-west fault zone in Yitong Basin and its relation with reservoir accumulation[J]. Geoscience, 2009, 23(5):860-864.
[19] 王海英. 伊通盆地岔路河断陷西北缘构造样式研究[J].中国石油和化工标准与质量, 2013, 33(15):171. WANG Haiying. Study on the structural style of the northwest margin of Chaluhe fault Depression in Yitong Basin[J]. China Petroleum and Chemical Standard and Quality, 2013, 33(15):171.
[20] 唐大卿, 何生, 陈红汉, 等. 伊通盆地断裂体系特征及其演化历史[J].吉林大学学报(地球科学版), 2009, 39(3):386-396. TANG Daqing, HE Sheng, CHEN Honghan, et al. Characteristics of inversion structures in Yitong Basin since Neogene[J]. Acta Petrolei Sinica, 2009, 39(3):386-396.
[21] 江涛, 邱玉超, 邓校国, 等. 狭长走滑断陷盆地构造对沉积-成藏的控制作用:以伊通盆地为例[J]. 石油实验地质, 2012, 34(3):267-271. JIANG Tao, QIU Yuchao, DENG Xiaoguo, et al. Controlling effect of channel strike-slip fault basin on deposition and accumulation:A case study in Yitong Basin[J]. Petroleum Geology & Experiment, 2012, 34(3):267-271.
[22] 蔡长娥, 刘震, 邓守伟, 等. 伊通盆地西北缘深层储层动态评价[J].中国矿业大学学报, 2015, 44(1):116-124. CAI Chang'e, LIU Zhen, DENG Shouwei, et al. Dynamic evaluation for the deep reservoir in the northwest of Yitong Basin[J]. Journal of China University of Mining & Technology, 2015, 44(1):116-124.
[23] 李本才, 孙凯, 白洪彬, 等. 伊通盆地层序地层格架与层序构成分析[J].岩性油气藏, 2009, 21(4):28-31. LI Bencai, SUN Kai, BAI Hongbin, et al. Sequence stratigraphic framework and sequence components of the Yitong Basin[J]. Lithologic Reservoirs, 2009, 21(4):28-31.
[24] 唐大卿, 陈红汉, 江涛, 等. 伊通盆地新近纪差异构造反转与油气成藏[J].石油探勘与开发, 2013, 40(6):682-691. TANG Daqing, CHENG Honghan, JIANG Tao, et al. Neogene differential structural inversion and hydrocarbon accumulation in the Yitong Basin, East China[J]. Petroleum Exploration and Development, 2013, 40(6):682-691.
[25] 骆鑫.伊通盆地波太凹陷双阳组致密气成藏潜力[J].石油知识, 2022, 38(1):60-61. LUO Xin. Tight gas accumulation potential of Shuangyang Formation in Botai Sag, Yitong Basin[J]. Petroleum Knowledge, 2022, 38(1):60-61.
[26] 任森林, 刘琳, 徐雷. 断层封闭性研究方法[J].岩性油气藏, 2011, 23(5):101-105. REN Senlin, LIU Lin, XU Lei. Research methods of fault sealing[J]. Lithologic Reservoirs, 2011, 23(5):101-105.
[27] 丰勇, 陈红汉, 叶加仁, 等. 伊通盆地岔路河断陷油气成藏过程[J].地球科学——中国地质大学学报, 2009, 34(3):502-510. FENG Yong, CHEN Honghan, YE Jiaren, et al. Reservoir-forming periods and accumulation process of Chaluhe fault depression of Yitong Basin[J]. Earth Science-Journal of China University of Geosciences, 2009, 34(3):502-510.
[1] ZHOU Ziqiang, ZHU Zhengping, PAN Renfang, DONG Yu, JIN Jineng. Simulation and prediction of tight sandstone reservoirs based on waveform facies-controlled inversion:A case study from the second member of Paleogene Kongdian Formation in southern Cangdong sag, Huanghua Depression [J]. Lithologic Reservoirs, 2024, 36(5): 77-86.
[2] ZHANG Lei, LI Sha, LUO Bobo, LYU Boqiang, XIE Min, CHEN Xinping, CHEN Dongxia, DENG Caiyun. Accumulation mechanism of overpressured lithologic reservoirs of the third member of Paleogene Shahejie Formation in northern Dongpu Sag [J]. Lithologic Reservoirs, 2024, 36(4): 57-70.
[3] ZHU Kangle, GAO Gang, YANG Guangda, ZHANG Dongwei, ZHANG Lili, ZHU Yixiu, LI Jing. Characteristics of deep source rocks and hydrocarbon accumulation model of Paleogene Shahejie Form ationin Qingshui subsag,Liaohe Depression [J]. Lithologic Reservoirs, 2024, 36(3): 146-157.
[4] XI Zhibo, LIAO Jianping, GAO Rongjin, ZHOU Xiaolong, LEI Wenwen. Tectonic evolution and hydrocarbon accumulation in northern Chenjia fault zone,Liaohe Depression [J]. Lithologic Reservoirs, 2024, 36(3): 127-136.
[5] FENG Bin, HUANG Xiaobo, HE Youbin, LI Hua, LUO Jinxiong, LI Tao, ZHOU Xiaoguang. Reconstruction of source-to-sink system of the third member of Paleogene Shahejie Formation in Miaoxibei area,Bohai Bay Basin [J]. Lithologic Reservoirs, 2024, 36(3): 84-95.
[6] FANG Xuqing, ZHONG Qi, ZHANG Jianguo, LI Junliang, MENG Tao, JIANG Zaixing, ZHAO Haibo. Cyclostratigraphy analysis and stratigraphic division of lower Sha-3 member of Paleogene in Zhanhua Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2024, 36(3): 19-30.
[7] WANG Ya, LIU Zongbin, LU Yan, WANG Yongping, LIU Chao. Flow unit division based on SSOM and its production application: A case study of sublacustrine turbidity channels of middle Es3 in F oilfield,Bohai Bay Basin [J]. Lithologic Reservoirs, 2024, 36(2): 160-169.
[8] NIU Chengmin, HUI Guanzhou, DU Xiaofeng, GUAN Dayong, WANG Bingjie, WANG Qiming, ZHANG Hongguo. Sedimentary model of sublacustrine fan of the third member of Paleogene Dongying Formation and large-scale oilfield discovered in western slope of Liaozhong Sag [J]. Lithologic Reservoirs, 2024, 36(2): 33-42.
[9] LI Shengqian, ZENG Jianhui, LIU Yazhou, LI Miao, JIAO Panpan. Reservoir diagenesis and pore evolution of Paleogene Pinghu Formation in Kongqueting area of Xihu Sag,East China Sea Basin [J]. Lithologic Reservoirs, 2023, 35(5): 49-61.
[10] HU Wangshui, GAO Feiyue, LI Ming, GUO Zhijie, WANG Shichao, LI Xiangming, LI Shengming, JIE Qiong. Fine characterization of reservoir units of Paleogene Shahejie Formation in Langgu Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2023, 35(5): 92-99.
[11] ZHANG Zhenhua, ZHANG Xiaojun, ZHONG Dakang, GOU Yingchun, ZHANG Shiming. Reservoir characteristics and main controlling factors of upper member of Paleogene Xiaganchaigou Formation in Nanyishan area, northwestern Qaidam Basin [J]. Lithologic Reservoirs, 2023, 35(3): 29-39.
[12] ZENG Xu, BIAN Congsheng, SHEN Rui, ZHOU Kejia, LIU Wei, ZHOU Suyan, WANG Xiaoluan. Nonlinear seepage characteristics of shale oil reservoirs of the third member of Paleogene Shahejie Formation in Qikou Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2023, 35(3): 40-50.
[13] ZHENG Bin, DONG Ao, ZHANG Yuanzhi, ZHANG Yi, SU Shan, ZHANG Shichao, FAN Jinjin, LUO Yinshan. Fluid pressure field building process and its petroleum geological significance of Paleogene Shahejie Formatiom in Bonan sag, Jiyang Depression [J]. Lithologic Reservoirs, 2023, 35(2): 59-67.
[14] WANYAN Ze, LONG Guohui, YANG Wei, CHAI Jingchao, MA Xinmin, TANG Li, ZHAO Jian, LI Haipeng. Hydrocarbon accumulation and evolution characteristics of Paleogene in Yingxiongling area, Qaidam Basin [J]. Lithologic Reservoirs, 2023, 35(2): 94-102.
[15] HUANG Junli, ZHANG Wei, LIU Lihui, CAI Guofu, ZENG Youliang, MENG Qingyou, LIU Hao. Ternary seismic configuration interpretation technology of Paleogene Wenchang Formation in Panyu 4 depression, Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2023, 35(2): 103-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Qinlian, ZHENG Rongcai, XIAO Ling,WANG Chengyu, NIU Xiaobing. Influencing factors and characteristics of Chang 6 reservoir in Wuqi area, Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(4): 45 -50 .
[2] WANG Dongqi, YIN Daiyin. Empirical formulas of relative permeability curve of water drive reservoirs[J]. Lithologic Reservoirs, 2017, 29(3): 159 -164 .
[3] LI Yun, SHI Zhiqiang. Study on fluid inclusion of tight sandstone reservoir of Upper Triassic Xujiahe Formation in central Sichuan Basin[J]. Lithologic Reservoirs, 2008, 20(1): 27 -32 .
[4] JIANG Ren, FAN Tailiang, XU Shouli. Concept and techniques of seismic geomorphology[J]. Lithologic Reservoirs, 2008, 20(1): 33 -38 .
[5] ZOU Mingliang, HUANG Sijing, HU Zuowei, FENG Wenli, LIU Haoniannian. The origin of carbonate cements and the influence on reservoir quality of Pinghu Formation in Xihu Sag, East China Sea[J]. Lithologic Reservoirs, 2008, 20(1): 47 -52 .
[6] WANG Bingjie, HE Sheng, NI June, FANG Du. Activity analysis of main faults in Qianquan area, Banqiao Sag[J]. Lithologic Reservoirs, 2008, 20(1): 75 -82 .
[7] CHEN Zhenbiao, ZHANG Chaomo, ZHANG Zhansong, LING Husong, SUN Baodian. Using NMR T2 spectrum distribution to study fractal nature of pore structure[J]. Lithologic Reservoirs, 2008, 20(1): 105 -110 .
[8] ZHANG Houfu, XU Zhaohui. Discussion on stratigraphic-lithologic reservoirs exploration in the aspect of the research history of reservoirs[J]. Lithologic Reservoirs, 2008, 20(1): 114 -123 .
[9] ZHANG Xia. Cultivation of exploration creativity[J]. Lithologic Reservoirs, 2007, 19(1): 16 -20 .
[10] YANG Wuyang, YANG Wencai, LIU Quanxin, WANG Xiwen. 3D frequency and space domain amplitude-preserved migration with viscoelastic wave equations[J]. Lithologic Reservoirs, 2007, 19(1): 86 -91 .
TRENDMD: