Lithologic Reservoirs

Previous Articles     Next Articles

A high-accuracy automatic identification and self-adaptive suppression method for single-frequency interference

CHEN Keyang, CHEN Shumin, LI Lailin, WANG Jianmin,WU Qingling, FAN Xingcai   

  1. Research Institute of Exploration and Development, PetroChina Daqing Oilfield Company Ltd., Daqing 163712, Heilongjiang, China
  • Online:2014-06-06 Published:2014-06-06

Abstract:

Industrial electrical interference in seismic data has the characteristics of single-frequency, which can be expressed with sine or cosine function. Therefore, this paper presented a new method of automatic identification and self-adaptive suppression of the single-frequency interference based on normalized cross correlation coefficient. We combined the sine function and cosine function to depict the single-frequency interference within the deep time-window, which can approximate the single-frequency interference that may be contained within the practical seismic data, and then minimized the square difference target function between the practical seismic data and the predicted single frequency interference, and finally computed the amplitude, frequency and phase of single-frequency interference. We carried out the normalized cross correlation computation between the predicted single-frequency interference and the practical seismic data, the larger the normalized cross correlation coefficient is, the more possibility the seismic data contains the single-frequency interference. On the contrary, this seismic trace does not contain single frequency interference or contains single frequency interference with week amplitude that can be ignored. Consequently, we presented a threshold value which is used to select the seismic trace containing single-frequency interference, which is subtracted from the original seismic data. With above processing stages, we finished the automatic identification and selt-adaptive suppression of single-frequency interference from the seismic data. The practical seismic data verifies the effectiveness and accuracy of the proposed method, which is better than conventional band pass filter square energy identifying method and the industrial software over the identification accuracy and suppression effect. In a summary, the proposed method can provide an effective method for the practical seismic data amplitude-preserved processing.

Key words: sedimentary microfacies,  sedimentary model, sedimentary evolution, Fuyu Oilfield, Songliao Basin

[1] 陆基孟.地震勘探原理(上、下册)[M].北京:石油大学出版社,2004.
[2] Linville A F,Meek R A. Canceling stationary sinusoidal noise[J].Geophysics,1992,57(11):1493-1501.
[3] 渥·伊尔马滋.地震资料分析———地震资料处理、反演和解释(上、下册)[M].刘怀山,译.北京:石油工业出版社,2006.
[4] 李振春,张军华.地震数据处理方法[M].东营:中国石油大学出版社,2004:60-63.
[5] 凌云.地震数据采集·处理·解释·一体化实践与探索[M].北京:石油工业出版社,2007.
[6] 李文艳,牛彦良,吴明华.消除50 Hz 干扰波的地震资料处理新方法[J].大庆石油地质与开发,2001,20(5): 67-68.
[7] 胡伟,吕小伟.压制地震资料中工业电干扰的余弦逼近法的改进及应用[J].物探与化探,2005,29(6): 537-540.
[8] 王立歆,孟宪军,张军华,等.基于维纳滤波的50 Hz 工业干扰去噪方法及应用[J].勘探地球物理进展,2010,33(1):32-35.
[9] 高少武,周兴元,蔡加铭.时间域单频干扰波压制[J].石油地球物理勘探,2001,36(1):51-55.
[10] 高少武,贺振华,赵波,等.时间域单频干扰波消除方法的改进[J].石油地球物理勘探,2008,43(3):270-274.
[11] 高少武,贺振华,赵波,等.自适应单频干扰波识别与消除方法研究[J].石油物探,2008,47(4):352-356.
[12] 高少武,赵波,贺振华,等.基于余弦函数的自适应单频干扰消除[J].地球物理学进展,2009,24(5):1762-1767.
[13] 高少武,罗国安,赵波,等.利用线性调频谱法识别与消除单频干扰[J].石油地球物理勘探,2010,45(6): 861-867.
[14] 高少武,赵波,祝树云,等.自相关法单频干扰识别与消除方法[J].地球物理学报,2011,54(3):854-861.
[15] 高少武,赵波,祝树云,等.余弦函数自适应法识别与消除单频干扰[J].石油地球物理勘探,2011,46(1):64-69.
[16] 高少武,赵波,祝树云,等.单频干扰逼近误差分析[J].石油地球物理勘探,2011,46(4):550-560.
[17] 罗国安,高少武,魏庚雨,等.Chirp-Z 变换谱分析压制地震记录单频干扰[J].石油地球物理勘探,2009,44(2): 166-172.
[18] 吴小培,詹长安,周荷琴.采用独立分量分析方法消除信号中的工频干扰[J].中国科学技术大学学报,2000,30(6): 671-676.
[19] 步长城,赵志萍,王广勇,等.在检波点域分离50 Hz 工业干扰[J].油气地球物理,2005,3(3):20-21.
[20] 李慧,王依川,张春堂,等.地震记录中工业电干扰噪声识别与压制[J].大庆石油地质与开发,2012,31(5):170-174.
[1] RAN Yixuan, WANG Jian, ZHANG Yi. Favorable exploration area and formation condition of bedrock reservoir in the of central paleo-uplift,northern Songliao Basin [J]. Lithologic Reservoirs, 2024, 36(6): 66-76.
[2] QU Weihua, TIAN Ye, DONG Changchun, GUO Xiaobo, LI Lili, LIN Siya, XUE Song, YANG Shihe. Characteristics of Cretaceous source rocks and their controlling effect on hydrocarbon accumulation in Dehui Fault Depression,Songliao Basin [J]. Lithologic Reservoirs, 2024, 36(6): 122-134.
[3] WANG Hongxing, HAN Shiwen, HU Jia, PAN Zhihao. Prediction and main controlling factors of tuff reservoirs of Cretaceous Huoshiling Formation in Dehui fault depression,Songliao Basin [J]. Lithologic Reservoirs, 2024, 36(5): 35-45.
[4] YANG Weihua. Hydrocarbon accumulation model and main controlling factors of tight oil of the fourth member of Cretaceous Yingcheng Formation in Shuangcheng fault depression,Songliao Basin [J]. Lithologic Reservoirs, 2024, 36(4): 25-34.
[5] BAO Hanyong, ZHAO Shuai, ZHANG Li, LIU Haotian. Exploration achievements and prospects for shale gas of Middle-Upper Permian in Hongxing area,eastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(4): 12-24.
[6] HE Wenyuan, ZHAO Ying, ZHONG Jianhua, SUN Ningliang. Characteristics and significance of micron pores and micron fractures in shale oil reservoirs of Cretaceous Qingshankou Formation in Gulong sag,Songliao Basin [J]. Lithologic Reservoirs, 2024, 36(3): 1-18.
[7] SUN Hanxiao, XING Fengcun, XIE Wuren, QIAN Hongshan. Lithofacies paleogeography evolution of Late Ordovician in Sichuan Basin and its surrounding areas [J]. Lithologic Reservoirs, 2024, 36(1): 121-135.
[8] HU Wangshui, GAO Feiyue, LI Ming, GUO Zhijie, WANG Shichao, LI Xiangming, LI Shengming, JIE Qiong. Fine characterization of reservoir units of Paleogene Shahejie Formation in Langgu Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2023, 35(5): 92-99.
[9] DU Changpeng. Natural gas accumulation conditions and main controlling factors of Cretaceous tight volcanic rocks in Yingshan-Shuangcheng fault depression,Songliao Basin [J]. Lithologic Reservoirs, 2023, 35(4): 115-124.
[10] LIU Zongbao, LI Xue, ZHENG Ronghua, LIU Huaqing, YANG Zhanlong, CAO Song. Sedimentary characteristics and models of shallow water delta front subfacies reservoirs: A case study of Sapugao oil layer in north-Ⅱ block of Sabei oilfield, Daqing placanticline [J]. Lithologic Reservoirs, 2022, 34(1): 1-13.
[11] HUANG Yarui, YANG Jianping, LU Huidong, LI Yuzhi, HUANG Zhijia, DANG Pengsheng, FANG Ping, MU Yingshun. Sedimentary characteristics of gravity flow of middle Es32 member in Yingbei area, Dongying Sag [J]. Lithologic Reservoirs, 2022, 34(1): 14-23.
[12] ZHANG Wenwen, HAN Changcheng, TIAN Jijun, ZHANG Zhiheng, ZHANG Nan, LI Zhengqiang. Sequence stratigraphy division and evolutionary features of Permian Lucaogou Formation in Jimsar Sag [J]. Lithologic Reservoirs, 2021, 33(5): 45-58.
[13] WANG Suying, ZHANG Xiang, TIAN Jingchun, PENG Minghong, ZHENG Xiaoyu, XIA Yongtao. Sedimentary evolution and sedimentary differentiation model of Kepingtage Formation in Shunbei area,Tarim Basin [J]. Lithologic Reservoirs, 2021, 33(5): 81-94.
[14] LIU Huaqing, FENG Ming, GUO Jingyi, PAN Shuxin, LI Hailiang, HONG Zhong, LIANG Sujuan, LIU Caiyan, XU Yunze. Seismic reflection and sedimentary characteristics of deep-water gravity flow channels on the slope of lacustrine depression basin: First member of Nenjiang Formation in LHP area, Songliao Basin [J]. Lithologic Reservoirs, 2021, 33(3): 1-12.
[15] WANG Huan, LIU Bo, SHI Kaibo, LIU Hangyu, HAN Bo. Characteristics of tectonic-sedimentary evolution from Jurassic to Cretaceous in Iraq-Iran area [J]. Lithologic Reservoirs, 2021, 33(3): 39-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Sijing,HUANG Peipei,WANG Qingdong,LIU Haonian,WU Meng,ZOU Mingliang. The significance of cementation in porosity preservation in deep-buried sandstones[J]. Lithologic Reservoirs, 2007, 19(3): 7 -13 .
[2] LIU Zhen,CHEN Yanpeng,ZHAO Yang,HAO Qi,XU Xiaoming,CHANG Mai. Distribution and controlling factors of hydrocarbon reservoirs in continental fault basins[J]. Lithologic Reservoirs, 2007, 19(2): 121 -127 .
[3] DING Chao,GUO Lan,YAN Jifu. Forming conditions of Chang 6 reservoir in Anding area of Zichang Oilfield[J]. Lithologic Reservoirs, 2009, 21(1): 46 -50 .
[4] LI Yanshan,ZHANG Zhansong,ZHANG Chaomo,CHEN Peng. Application of mercury injection data to Chang 6 reservoir classification in Changqing area[J]. Lithologic Reservoirs, 2009, 21(2): 91 -93 .
[5] LUO Peng,LI Guorong,SHI Zejin,ZHOU Dazhi,TANG Hongwei,ZHANG Deming. Analysis of sequence stratigraphy and sedimentary facies of M aokou Formation in southeastern Sichuan[J]. Lithologic Reservoirs, 2010, 22(2): 74 -78 .
[6] ZUO Guoping, TU Xiaolong, XIA Jiufeng. Study on volcanic reservoir types in Subei exploration area[J]. Lithologic Reservoirs, 2012, 24(2): 37 -41 .
[7] WANG Feiyu. Method to improve producing degree of thermal recovery horizontal wells and its application[J]. Lithologic Reservoirs, 2010, 22(Z1): 100 -103 .
[8] YUAN Yunfeng,CAI Ye,FAN Zuochun,JIANG Yiyang,QIN Qirong, JIANG Qingping. Fracture characteristics of Carboniferous volcanic reservoirs in Hongche fault belt of Junggar Basin[J]. Lithologic Reservoirs, 2011, 23(1): 47 -51 .
[9] YUAN Jianying, FU Suotang, CAO Zhenglin, YAN Cunfeng,ZHANG Shuichang, MA Dade. Multi-source hydrocarbon generation and accumulation of plateau multiple petroleum system in Qaidam Basin[J]. Lithologic Reservoirs, 2011, 23(3): 7 -14 .
[10] SHI Zhanzhan, HE Zhenhua, WEN Xiaotao, TANG Xiangrong. Reservoir detection based on EMD and GHT[J]. Lithologic Reservoirs, 2011, 23(3): 102 -105 .
TRENDMD: