Lithologic Reservoirs ›› 2014, Vol. 26 ›› Issue (5): 5-8.doi: 10.3969/j.issn.1673-8926.2014.05.002

Previous Articles     Next Articles

A new method for determining physical property lower limit of tight sandstone reservoir and reservoir system classification

ZHANG Anda1, WANG Cheng1, QIAO Rui2   

  1. 1. Research Institute of Exploration and Development, PetroChina Daqing Oilfield Company Ltd., Daqing 163712, Heilongjiang, China; 2. Testing Technology Services Company, PetroChina Daqing Oilfield Company Ltd., Daqing 163000, Heilongjiang, China
  • Online:2014-10-20 Published:2014-10-20

Abstract:

Tight sandstone reservoir of Fuyu oil layer is a new target of current exploration and development, but there lacks clear definition of the property lower limit.By using statistical method combining physical properties with reservoir productivity, this paper carried out statistical analysis of physical properties respectively on the commercial oil layer and low yield oil layer according to the cumulative probability loss 10%. The physical property lower limit of commercial reservoir is φ=7.1%,K=0.08 mD. The physical property lower limit of low yield oil layer is φ=5.6%, K= 0.0047 mD. Based on function fitting method combining tight sandstone critical pore throat radius with mercury injection data, it is determined that the physical property lower limit is φ=4.46%, K=0.041mD. Considering the lower limit value being close to the lower limit of low yield oil layer, we took the lower limit value as the physical property lower limit of tight reservoir. Based on the physical property lower limit of the tight and commercial reservoir and the conventional reservoir classification boundaries, we classified sandstone reservoir system into class Ⅲ, class Ⅱ and class Ⅰ of tight reservoir, and low, middle, high and extra-high porosity and permeability reservoir. The determination of tight reservoir physical property lower limit and reservoir system classification can provide important parameters and technical supports for productivity calculation and evaluation of tight reservoir.

Key words: low resistivity oil layer, tri-water model, saturation evaluation, Zhujiang Formation, Pearl River Mouth Basin

[1]付广,薛盼,孙同文,等.源外隆起区油气成藏与分布主控因素及模式———以松辽盆地杏北地区扶余油层为例[J].岩性油气藏,2013,25(5):13-17.
[2]刘宗堡,贾钧捷,赵淼,等.大型凹陷源外斜坡区油运聚成藏模式———以松辽盆地长 10 地区扶余油层为例[J].岩性油气藏,2012,24(1):64-68.
[3]周永炳,刘志国,俞静.大庆低渗透油藏探明储量面积圈定的几点认识[J].岩性油气藏,2007,19(4):111-115.
[4]梁旭,邓宏文,秦雁群.大庆长垣泉三、四段扶余油层储层特征与主控因素分析[J].特种油气藏,2012,19(1):58-61.
[5]邹才能,陶士振,侯连华,等.非常规油气地质[M].北京:地质出版社,2011:1-150.
[6]赵靖舟.非常规油气有关概念、分类及资源潜力[J].天然气地球科学,2012,23(3):393-406.
[7]李道品.低渗透砂岩油田开发[M].北京:石油工业出版社,1997:69-72.
[8]Spencer C W. Review of Characteristics of low-permeability gas reservoirs in western United States[J]. AAPG Bulletin,1989,73(5):613-629.
[9]Kazemi H . Low-permeability gas sands[J]. Journal of petroleum,1982,34(10):2229-2232.
[10]郭睿.储集层物性下限值确定方法及其补充[J].石油勘探与开发,2004,31(5):140-144.
[11]操应长,王艳忠,徐涛玉,等.东营凹陷西部沙四上亚段滩坝砂体有效储层的物性下限及控制因素[J].沉积学报,2009,27(2):230-237.
[12]李明,刘继梓,王雪荔,等.S 油田 W 南区长 6 特低渗透储层物性下限标准研究[J].辽宁化工,2010,39(10):1065-1068.
[13]侯雨庭,郭清姬,李高仁.西峰油田有效厚度下限研究[J].中国石油勘探,2003,8(3):51-54.
[14]崔永斌.有效储层物性下限值的确定方法[J].国外测井技术,2007,22(3):32-35.
[15]王娟,刘学刚,崔志林.确定储集层孔隙度和渗透率下限的几种方法[J].新疆石油地质,2010,31(2):203-205.
[16]张春,蒋裕强,郭红光,等.有效储层基质物性下限确定方法[J].油气地球物理,2010,8(2):11-16.
[17]张绍礼,李东平,王宏声,等.SY/T 6293—2008 勘探试油工作规范[S].北京:石油工业出版社,2008.
[18]郝乐伟,王琪,唐俊.储层岩石微观孔隙结构研究方法与理论综述[J].岩性油气藏,2013,25(5):123-128.
[19]邹才能,朱如凯,白斌,等.中国油气储层中纳米孔首次发现及其科学价值[J].岩石学报,2011,27(6):1857-1864.
[20]赵澄林,胡爱梅,陈碧与,等.SY/T 6285—1997 油气储层评价方法[S].北京:石油工业出版社,1998.
[21]贾承造,邹才能,李建忠,等.中国致密油评价标准、主要类型、基本特征及资源前景[J].石油学报,2012,33(3):343-350.
[1] HE Yanbing, XIAO Zhangbo, ZHENG Yangdi, LIU Junyi, YI Hao, ZHAO Qing, ZHANG Yuexia, HE Yong. Hydrocarbon accumulation characteristics of Mesozoic Lufeng 7-9 buried hill in Lufeng 13 subsag transition zone,Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2023, 35(3): 18-28.
[2] HUANG Junli, ZHANG Wei, LIU Lihui, CAI Guofu, ZENG Youliang, MENG Qingyou, LIU Hao. Ternary seismic configuration interpretation technology of Paleogene Wenchang Formation in Panyu 4 depression, Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2023, 35(2): 103-112.
[3] HE Yong, QIU Xinwei, LEI Yongchang, XIE Shiwen, XIAO Zhangbo, LI Min. Tectonic evolution and hydrocarbon accumulation characteristics of Cenozoic in eastern Lufeng 13 subsag, Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2023, 35(1): 74-82.
[4] ZHANG Weiwei, LIU Jun, LIU Lihui, ZHANG Xiaozhao, BAI Haijun, YANG Dengfeng. Lithology prediction technology and its application of Paleogene Wenchang Formation in Panyu 4 depression,Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2022, 34(6): 118-125.
[5] LI Chengze, CHEN Guojun, TIAN Bing, YUAN Xiaoyu, SUN Rui, SU Long. Water-rock interaction in deep strata under high temperature and high pressure in Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2022, 34(4): 141-149.
[6] ZHANG Wei, LI Lei, QIU Xinwei, GONG Guangchuan, CHENG Linyan, GAO Yifan, YANG Zhipeng, YANG Lei. A/S control on spatiotemporal evolution of deltas in rifted lacustrine basin and its numerical simulation: A case study of Paleogene Wenchang Formation in Lufeng 22 subsag,Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2022, 34(3): 131-141.
[7] ZHANG Xiaozhao, WU Jing, PENG Guangrong, XU Xinming, ZHENG Xiaobo. Miocene river-wave dominated sedimentary system in south belt of Enping Sag and its significance [J]. Lithologic Reservoirs, 2022, 34(2): 95-104.
[8] ZHAO Jun, HAN Dong, HE Shenglin, TANG Di, ZHANG Tao. Identification of fluid properties of low contrast reservoir based on water-gas ratio calculation [J]. Lithologic Reservoirs, 2021, 33(4): 128-136.
[9] XIANG Qiaowei, LI Xiaoping, DING Lin, DU Jiayuan. Formation mechanism and petroleum geological significance of Paleogene sandstone with high natural gamma value in Zhuyi Depression, Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2021, 33(2): 93-103.
[10] LUO Ze, XIE Mingying, LIANG Jie, TU Zhiyong, HOU Kai. Macro-correction method and application of seismic pseudo-well velocity point: a case study from M gas field in Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2020, 32(3): 115-121.
[11] DU Xulin, DAI Zong, XIN Jing, LI Hailong, CAO Renyi, LUO Donghong. Three-dimensional water flooding physical simulation experiment of horizontal well in heavy oil reservoir with strong bottom water [J]. Lithologic Reservoirs, 2020, 32(2): 141-148.
[12] LUO Ze, XIE Mingying, TU Zhiyong, WEI Xihui, CHEN Yiming. A set of recognition techniques for thin reservoirs with unconsolidated high-argillaceous sandstone: a case study from X oilfield in Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2019, 31(6): 95-101.
[13] DU Guichao, SU Long, CHEN Guojun, ZHANG Gongcheng, DING Chao, CAO Qing, LU Yuexin. Carbonate cements and its effect on reservoir property of shallow marine sandstones of Zhuhai Formation in Panyu low-uplift,Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2019, 31(3): 10-19.
[14] RUI Zhifeng, LIN Changsong, DU Jiayuan, DING Lin, LI Xiao. Key sequence surfaces identification and its significance in the exploration of lithologic reservoirs: a case of Zhujiang Formation in Huizhou Depression [J]. Lithologic Reservoirs, 2019, 31(1): 96-105.
[15] LI Wenjing, WANG Yingmin, HE Min, CHEN Weitao, XU Shaohua, ZHUO Haiteng. Types and controlling factors of shelf margin delta of Middle Miocene in Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2018, 30(2): 58-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Sijing,HUANG Peipei,WANG Qingdong,LIU Haonian,WU Meng,ZOU Mingliang. The significance of cementation in porosity preservation in deep-buried sandstones[J]. Lithologic Reservoirs, 2007, 19(3): 7 -13 .
[2] LIU Zhen,CHEN Yanpeng,ZHAO Yang,HAO Qi,XU Xiaoming,CHANG Mai. Distribution and controlling factors of hydrocarbon reservoirs in continental fault basins[J]. Lithologic Reservoirs, 2007, 19(2): 121 -127 .
[3] DING Chao,GUO Lan,YAN Jifu. Forming conditions of Chang 6 reservoir in Anding area of Zichang Oilfield[J]. Lithologic Reservoirs, 2009, 21(1): 46 -50 .
[4] LI Yanshan,ZHANG Zhansong,ZHANG Chaomo,CHEN Peng. Application of mercury injection data to Chang 6 reservoir classification in Changqing area[J]. Lithologic Reservoirs, 2009, 21(2): 91 -93 .
[5] LUO Peng,LI Guorong,SHI Zejin,ZHOU Dazhi,TANG Hongwei,ZHANG Deming. Analysis of sequence stratigraphy and sedimentary facies of M aokou Formation in southeastern Sichuan[J]. Lithologic Reservoirs, 2010, 22(2): 74 -78 .
[6] ZUO Guoping, TU Xiaolong, XIA Jiufeng. Study on volcanic reservoir types in Subei exploration area[J]. Lithologic Reservoirs, 2012, 24(2): 37 -41 .
[7] WANG Feiyu. Method to improve producing degree of thermal recovery horizontal wells and its application[J]. Lithologic Reservoirs, 2010, 22(Z1): 100 -103 .
[8] YUAN Yunfeng,CAI Ye,FAN Zuochun,JIANG Yiyang,QIN Qirong, JIANG Qingping. Fracture characteristics of Carboniferous volcanic reservoirs in Hongche fault belt of Junggar Basin[J]. Lithologic Reservoirs, 2011, 23(1): 47 -51 .
[9] YUAN Jianying, FU Suotang, CAO Zhenglin, YAN Cunfeng,ZHANG Shuichang, MA Dade. Multi-source hydrocarbon generation and accumulation of plateau multiple petroleum system in Qaidam Basin[J]. Lithologic Reservoirs, 2011, 23(3): 7 -14 .
[10] SHI Zhanzhan, HE Zhenhua, WEN Xiaotao, TANG Xiangrong. Reservoir detection based on EMD and GHT[J]. Lithologic Reservoirs, 2011, 23(3): 102 -105 .
TRENDMD: