Lithologic Reservoirs ›› 2016, Vol. 28 ›› Issue (6): 134-139.doi: 10.3969/j.issn.1673-8926.2016.06.018

Previous Articles    

Pore-throat ratio can not be determined by constant-speed mercury injection method

Li Chuanliang1, Zhu Suyang1, Nie Kuang2, Deng Peng1, Liu Donghua3   

  1. 1. College of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu 610599,China;2. College of Petroleum Engineering, China University of Petroleum, Beijing 102249,China;3. Zhanjiang Branch of CNOOC Ltd., Zhanjiang 524057, China
  • Received:2016-07-05 Revised:2016-08-23 Online:2016-11-10 Published:2016-11-10

Abstract: Mercury injection method is very important in research of pore structure of rocks. Conventional mercury injection method can be used to determine rock’s pore size and its distribution. Constant-speed mercury injection method expanded the functions of conventional mercury injection method, and can determine pore’s and throat’s parameters of rocks. However, according to the study of this paper, the function expanded by the constant-speed mercury injection method is the misuse of the “noise” of pressure data. Pores of rocks build an interconnected 3D pore net. There are no concepts of pore body and pore throat. Every pore is connected with surrounding big pores and small pores. Mercury would not enter throats before entering pore bodies, which choose the bigger pores first and then the smaller pores to enter. The sawtooth-like curve of mercury injection is not the reflection of pore-throat structures of rocks, which is the pressure fluctuation caused by the mechanical process of mercury injection apparatus. The pressure fluctuation of oil wells in production process is also not caused by pore-throat structures of reservoir rocks.

Key words: clastic buried hill, reservoir characteristics, controlling factors, fracture prediction, Huanghua Depression

[1] Guan Yunwen, Su Siyu, Pu Renhai, Wang Qichao, Yan Sujie, Zhang Zhongpei, Chen Shuo, Liang Dongge. Palaeozoic gas reservoir-forming conditions and main controlling factors in Xunyi area,southern Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(6): 77-88.
[2] ZHOU Ziqiang, ZHU Zhengping, PAN Renfang, DONG Yu, JIN Jineng. Simulation and prediction of tight sandstone reservoirs based on waveform facies-controlled inversion:A case study from the second member of Paleogene Kongdian Formation in southern Cangdong sag, Huanghua Depression [J]. Lithologic Reservoirs, 2024, 36(5): 77-86.
[3] SHEN Youyi, WANG Kaifeng, TANG Shuheng, ZHANG Songhang, XI Zhaodong, YANG Xiaodong. Geological modeling and“sweet spot”prediction of Permian coal measures shale reservoirs in Yushe-Wuxiang block,Qinshui Basin [J]. Lithologic Reservoirs, 2024, 36(4): 98-108.
[4] YANG Runze, ZHAO Xianzheng, LIU Haitao, LI Hongjun, ZHAO Changyi, PU Xiugang. Hydrocarbon accumulation characteristics and favorable zones prediction in and under source of Paleozoic in Huanghua Depression,Bohai Bay Basin [J]. Lithologic Reservoirs, 2023, 35(3): 110-125.
[5] LUO Qun, ZHANG Zeyuan, YUAN Zhenzhu, XU Qian, QIN Wei. Connotation,evaluation and optimization of tight oil sweet spots: A case study of Cretaceous Xiagou Formation in Qingxi Sag,Jiuquan Basin [J]. Lithologic Reservoirs, 2022, 34(4): 1-12.
[6] CHENG Danhua, JIAO Xiarong, WANG Jianwei, ZHUANG Dongzhi, WANG Zhengjun, JIANG Shan. Shale oil reservoir characteristics and significance of the first member of Paleogene Shahejie Formation in Nanpu Sag,Huanghua Depression [J]. Lithologic Reservoirs, 2022, 34(3): 70-81.
[7] GUO Meijie, SHI Baohong, DONG Xiongying, LI Haodong, HE Chuan. Hydrocarbon accumulation conditions and main controlling factors of Paleogene in Chenghai slope,Huanghua Depression [J]. Lithologic Reservoirs, 2022, 34(3): 82-92.
[8] CUI Jun, MAO Jianying, CHEN Dengqian, SHI Qi, LI Yanan, XIA Xiaomin. Reservoir characteristics of Paleogene lacustrine carbonate rocks in western Qaidam Basin [J]. Lithologic Reservoirs, 2022, 34(2): 45-53.
[9] MA Zhengwu, GUAN Dayong, WANG Qiming, LIU Yaojun, LI Xiaohui. Sedimentary characteristics and controlling factors of sublacustrine fans of the third member of Paleogene Dongying Formation in Liaozhong Sag [J]. Lithologic Reservoirs, 2022, 34(2): 131-140.
[10] ZHANG Menglin, LI Guoqin, HE Jia, HENG De. Main controlling factors of Ordovician Wufeng-Silurian Longmaxi shale gas enrichment in Tiangongtang structure, southwestern margin of Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(2): 141-151.
[11] DONG Min, GUO Wei, ZHANG Linyan, WU Zhonghai, MA Licheng, DONG Hui, FENG Xingqiang, YANG Yuehui. Characteristics of paleotectonic stress field and fractures of WufengLongmaxi Formation in Luzhou area, southern Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(1): 43-51.
[12] XU Shiyu, LIN Yi, ZENG Yiyang, ZHAO Chunni, HE Kailai, YANG Jing, LI Yang, ZHU Yi. Gas-water distribution characteristics and main controlling factors of Lower Permian Qixia Formation in Shuangyushi area, NW Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(1): 63-72.
[13] XIONG Jiabei, HE Dengfa. Distribution characteristics and controlling factors of global giant carbonate stratigraphic-lithologic oil and gas fields [J]. Lithologic Reservoirs, 2022, 34(1): 187-200.
[14] WANG Yongxiao, FU Siyi, ZHANG Chenggong, FAN Ping. Characteristics of tight sandstone reservoirs of the second member of Shanxi Formation in eastern Ordos Basin [J]. Lithologic Reservoirs, 2021, 33(6): 12-20.
[15] SHAO Xiaozhou, WANG Miaomiao, QI Yalin, HE Tongtong, ZHANG Xiaolei, PANG Jinlian, GUO Yixuan. Characteristics and main controlling factors of Chang 8 reservoir in northern Pingliang area,Ordos Basin [J]. Lithologic Reservoirs, 2021, 33(6): 59-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Zhanlong,ZHANG Zhenggang,CHEN Qilin,GUO Jingyi,SHA Xuemei,LIU Wensu. Using multi-parameters analysis of seismic information to evaluate lithologic traps in continental basins[J]. Lithologic Reservoirs, 2007, 19(4): 57 -63 .
[2] FANG Chaohe, WANG Yifeng, ZHENG Dewen, GE Zhixin. Maceral and petrology of Lower Tertiary source rock in Qintong Sag, Subei Basin[J]. Lithologic Reservoirs, 2007, 19(4): 87 -90 .
[3] LIN Chengyan, TAN Lijuan, YU Cuiling. Research on the heterogeneous distribution of petroleum(Ⅰ)[J]. Lithologic Reservoirs, 2007, 19(2): 16 -21 .
[4] WANG Tianqi, WANG Jiangong, LIANG Sujuan, SHA Xuemei. Fine oil exploration of Putaohua Formation in Xujiaweizi area, Songliao Basin[J]. Lithologic Reservoirs, 2007, 19(2): 22 -27 .
[5] WANG Xiwen,SHI Lanting,YONG Xueshan,YNAG Wuyang. Study on seismic impedance inversion[J]. Lithologic Reservoirs, 2007, 19(3): 80 -88 .
[6] HE Zongbin,NI Jing,WU Dong,LI Yong,LIU Liqiong,TAI Huaizhong. Hydrocarbon saturation determined by dual-TE logging[J]. Lithologic Reservoirs, 2007, 19(3): 89 -92 .
[7] YUAN Shengxue,WANG Jiang. Identification of the shallow gas reservoir in Shanle area,Tuha Basin[J]. Lithologic Reservoirs, 2007, 19(3): 111 -113 .
[8] CHEN Fei,WEI Dengfeng,YU Xiaolei,WU Shaobo. Sedimentary facies of Chang 2 oil-bearing member of Yanchang Formation in Yanchi-Dingbian area, Ordos Basin[J]. Lithologic Reservoirs, 2010, 22(1): 43 -47 .
[9] XU Yunxia,WANG Shanshan,YANG Shuai. Using Walsh transform to improve signal-to-noise ratio of seismic data[J]. Lithologic Reservoirs, 2009, 21(3): 98 -100 .
[10] LI Jianming,SHI Lingling,WANG Liqun,WU Guangda. Characteristics of basement reservoir in Kunbei fault terrace belt in southwestern Qaidam Basin[J]. Lithologic Reservoirs, 2011, 23(2): 20 -23 .
TRENDMD: