Lithologic Reservoirs ›› 2018, Vol. 30 ›› Issue (4): 140-148.doi: 10.12108/yxyqc.20180417

Previous Articles     Next Articles

Volume fracturing parameters optimization of horizontal well in tight reservoir

SU Hao1,2, LEI Zhengdong2, ZHANG Diqiu3, LI Junchao2, JU Binshan1, ZHANG Zeren4   

  1. 1. School of Energy Resources, China University of Geosciences, Beijing 100083, China;
    2. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China;
    3. PetroChina Research Institute of Economics & Technology, Beijing 100724, China;
    4. Bureau of Geophysical Prospecting, PetroChina, Zhuozhou 072750, China
  • Received:2017-12-20 Revised:2018-03-04 Online:2018-07-21 Published:2018-07-21

Abstract: The technique combining horizontal well with volume fracturing is an important way to obtain commercial oil flow in tight reservoir. In order to optimize the volume fracturing parameters of horizontal well which influence its development effects,based on the numerical simulation method of discrete fracture model,the more flexible unstructured grid was used to establish simulation models of volume fracturing for horizontal well, which can explicitly characterize the geometric parameters of complex fractures and the flows inside,verified by the Eclipse software and the actual mine well data. By referring to the parameters of tight reservoir in Changqing Oilfield,the parameters of the horizontal well such as orientation,fracture arrangement,stage spacing,cluster spacing and SRV were optimized. The results show that the development effect is best when the orientation of horizontal well is parallel to the orientation of natural fractures. The optimal sorting of fracture arrangement type is dumbbell-type,staggered-type,uniform-type and spindle-type. The stage spacing should be longer than sum of drainage radius of both two adjacent stages,so as to eliminate the interference among the stages. The cluster spacing should be as long as possible without excess the average length of natural fractures. When SRV is constant,the longer the length of stimulated areas,the better the development effect will be. When the length of the stimulated fracture is difficult to increase restricted by technology,increasing the number of cluster could improve the well productivity as well,and the more clusters there are,the highest of initial cumulative production can be expected,nevertheless,the optimal cluster number depends on well planned production time. The research results can provide a basis for the design of fractured horizontal wells in tight reservoirs.

Key words: radial well fracturing, steam soak, deliverability, fracture morphology

CLC Number: 

  • TE319
[1] 赵政璋, 杜金虎, 邹才能, 等.致密油气.北京:石油工业出版社, 2012:1-42. ZHAO Z Z, DU J H, ZOU C N, et al. Tight oil and gas. Beijing:Petroleum Industry Press, 2012:1-42.
[2] 杨华, 李士祥, 刘显阳.鄂尔多斯盆地致密油、页岩油特征及资源潜力.石油学报, 2013, 34(1):1-11. YANG H, LI S X, LIU X Y. Characteristics and resource prospects of tight oil and shale oil in Ordos Basin. Acta Petrolei Sinica, 2013, 34(1):1-11.
[3] 邱振, 李建忠, 吴晓智, 等.国内外致密油勘探现状、主要地质特征及差异.岩性油气藏, 2015, 27(4):119-126. QIU Z, LI J Z, WU X Z, et al. Exploration status, main geologic characteristics and their differences of tight oil between America and China. Lithologic Reservoirs, 2015, 27(4):119-126.
[4] 付金华, 喻建, 徐黎明, 等.鄂尔多斯盆地致密油勘探开发新进展及规模富集可开发主控因素.中国石油勘探, 2015, 20(5):9-19. FU J H, YU J, XU L M, et al. New progress in exploration and development of tight oil in Ordos Basin and main controlling factors of large-scale enrichment and exploitable capacity. China Petroleum Exploration, 2015, 20(5):9-19.
[5] 贾承造, 邹才能, 李建忠, 等. 中国致密油评价标准、主要类型、基本特征及资源前景.石油学报, 2012, 33(3):343-350. JIA C Z, ZOU C N, LI J Z, et al. Assessment criteria, main types, basic features and resource prospects of the tight oil in China. Acta Petrolei Sinica, 2012, 33(3):343-350.
[6] 王秀娟, 王明磊, 赵爱彬. 鄂尔多斯盆地延长组长7致密油储层微观特征.岩性油气藏, 2014, 26(3):79-83. WANG X J, WANG M L, ZHAO A B. Microscopic characteristics of Chang 7 tight sandstone reservoir in Ordos Basin. Lithologic Reservoirs, 2014, 26(3):79-83.
[7] 李卫成, 叶博, 张艳梅, 等.致密油水平井体积压裂攻关试验区单井产量主控因素分析. 石油地质与工程, 2016, 30(6):111-114. LI W C, YE B, ZHANG Y M, et al. The main control factors of single well productivity for the experiment block using horizontal well by volume fracturing in tight oil reservoir. Petroleum Geology and Engineering, 2016, 30(6):111-114.
[8] 樊建明, 杨子清, 李卫兵, 等.鄂尔多斯盆地长7致密油水平井体积压裂开发效果评价及认识. 中国石油大学学报(自然科学版), 2015, 39(4):103-110. FAN J M, YANG Z Q, LI W B, et al. Assessment of fracturing treatment of horizontal wells using SRV technique for Chang-7 tight oil reservoir in Ordos Basin. Journal of China University of Petroleum(Edition of Natural Science), 2015, 39(4):103-110.
[9] 韩婧婧, 刘建, 武龙. 鄂尔多斯盆地长6致密砂岩油藏压裂技术研究. 岩性油气藏, 2017, 29(1):130-134. HAN J J, LIU J, WU L. Investigation on fracturing technology of Chang 6 tight sandstone reservoir in Ordos Basin. Lithologic Reservoirs, 2017, 29(1):130-134.
[10] 张娅妮, 马新仿. 页岩气体积压裂数值模拟研究.天然气与石油, 2015, 33(1):54-58. ZHANG Y N, MA X F. Numerical simulation study on shale gas volume fracturing. Natural Gas and Oil, 2015, 33(1):54-58.
[11] 孟展, 杨胜来, 王璐, 等.合水长6致密油体积压裂水平井产能影响因素分析.非常规油气, 2016, 3(5):127-133. MENG Z, YANG S L, WANG L, et al. Analysis of influence factors on horizontal well productivity by volume fracturing in Heshui Chang 6 tight oil reservoir. Unconventional Oil and Gas, 2016, 3(5):127-133.
[12] 潘有军, 荆文波, 徐赢, 等.火山岩油藏水平井体积压裂产能预测研究.岩性油气藏, 2018, 30(3):159-164. PAN Y J, JING W B, XU Y, et al. Productivity prediction of horizontal wells by volume fracturing in volcanic reservoirs. Lithologic Reservoirs, 2018, 30(3):159-164.
[13] 孙兵, 刘立峰, 丁江辉. 致密油水平井产能主控地质因素研究.特种油气藏, 2017, 24(2):115-119. SUN B, LIU L F, DING J H. Study of the main geological control factors on horizontal well productivity in tight oil reservoir. Special Oil and Gas Reservoirs, 2017, 24(2):115-119.
[14] 闵春佳, 卢双舫, 唐明明, 等.致密油储层水平井压裂参数优化模拟.断块油气田, 2015, 22(6):794-797. MIN C J, LU S F, TANG M M, et al. Hydro-fracturing parameter optimization and simulation of horizontal well in tight oil reservoir. Fault-Block Oil and Gas Field, 2015, 22(6):794-797.
[15] 胡嘉, 姚猛.页岩气水平井多段压裂产能影响因素数值模拟研究.石油化工应用, 2013, 32(5):34-39. HU J, YAO M. Multiple fracturing of horizontal well in shale gas productivity factors numerical simulation researching. Petrochemical Industry Application, 2013, 32(5):34-39.
[16] WARREN J E, ROOT P J. The behavior of naturally fractured reservoirs. SPE Journal, 1963, 3(3):245-255.
[17] KARIMI-FARD M, FIROOZABADI A. Numerical simulation of water injection in fractured media using the discrete-fracture model and the Galerkin method. SPE Reservoir Evaluation & Engineering, 2003, 6(2):117-126.
[18] ZHANG Y B, GONG B, LI J C, et al. Discrete fracture modeling of 3 D heterogeneous enhanced coalbed methane recovery with prismatic meshing. Energies, 2015, 8(6):6153-6176.
[19] 彭晖, 刘玉章, 冉启全, 等.致密油储层水平井产能影响因素研究. 天然气地球科学, 2014, 25(5):771-777. PENG H, LIU Y Z, RAN Q Q, et al. Study on the horizontal well production in tight oil reservoirs. Natural Gas Geoscience, 2014, 25(5):771-777.
[20] KARIMI-FARD M, DURLOFSKY L J, AZIZ K. An efficient discrete-fracture model applicable for general-purpose reservoir simulators. SPE 88812, 2004.
[21] PEACEMAN D W. Interpretation of well-block pressures in numerical reservoir simulation with nonsquare grid blocks and anisotropic permeability. SPE Journal, 1983, 23(3):531-543.
[22] YU W, LUO Z, JAVADPOUR F, et al. Sensitivity analysis of hydraulic fracture geometry in shale gas reservoirs. Journal of Petroleum Science and Engineering, 2014, 113(1):1-7.
[23] 刘建伟, 张佩玉, 廖天彬, 等.马58 H致密油藏水平井分段多簇射孔压裂技术.石油钻采工艺, 2015, 37(3):88-92. LIU J W, ZHANG P Y, LIAO T B, et al. Staged multi-cluster perforation fracturing technology for horizontal well Ma-58 H in tight reservoir. Oil Drilling and Production Technology, 2015, 37(3):88-92.
[24] 刘卫东, 张国栋, 白志峰, 等.致密油藏水平井多级压裂储层改造体积评价.新疆石油地质, 2015, 36(2):199-203. LIU W D, ZHANG G D, BAI Z F, et al. Evaluation of stimulated reservoir volume(SRV) in tight oil reservoirs by horizontal well multistage fracturing process. Xinjiang Petroleum Geology, 2015, 36(2):199-203.
[25] 蒋廷学, 王海涛, 卞晓冰, 等.水平井体积压裂技术研究与应用.岩性油气藏, 2018, 30(3):1-11. JIANG T X, WANG H T, BIAN X B, et al. Volume fracturing technology for horizontal well and its application. Lithologic Reservoirs, 2018, 30(3):1-11.
[1] LI Xiaolong, XU Huaru, LIU Xiaoqiang, WANG Tao, ZHANG Kaiwen, QU Zhanqing. Fracture morphology and production performance of radial well fracturing [J]. Lithologic Reservoirs, 2017, 29(6): 154-160.
[2] HUANG Quanhua, TONG Kai, CHEN Chong, LU Yun, FU Yunhui. Pseudo-steady state deliverability for gas wells in thick gas reservoirs [J]. Lithologic Reservoirs, 2017, 29(6): 148-153.
[3] ZHANG Jiqiang, LI Xiaoping, YUAN Lin, WANG Wenbin, WANG Chaowen. Influence of non-Darcy flow on deliverability of gas-water producing horizontal well in low permeability gas reservoirs [J]. Lithologic Reservoirs, 2014, 26(6): 120-125.
[4] HUANG Xiaohai,LI Xiaoping,YUAN Lin. Deduction and application of trinomial equation for water producing gas well with abnormal pressure [J]. Lithologic Reservoirs, 2014, 26(5): 119-123.
[5] ZHONG Jiajun, TANG Hai, LU Dongliang, ZHANG Zongda, LI Donglin. Study on a single point deliverability formula of horizontal wells in Sulige Gas Field [J]. Lithologic Reservoirs, 2013, 25(2): 107-111.
[6] CHEN Feng,LI Xiaoping,WANG Zitian,TIAN Min. A new deliverability model for horizontal gas well under non-uniform damage [J]. Lithologic Reservoirs, 2012, 24(1): 121-124.
[7] WANG Dawei, LI Xiaoping. Advances in deliverability analysis of horizontal well [J]. Lithologic Reservoirs, 2011, 23(2): 118-123.
[8] ZHANG Yunjie, WU Yunli. Integrated evaluation of deliverability in low permeability lithologic gas reservoirs in Santanghu Basin [J]. Lithologic Reservoirs, 2010, 22(Z1): 96-99.
[9] LV Dongliang,TANG Hai,LV Jianjiang,MA Xiaoming,YU Beibei,WANG Quanlin. Deliverability equation for water-production gas well [J]. Lithologic Reservoirs, 2010, 22(4): 112-115.
[10] LI Hua,LIU Shuangqi,ZHU Shaopeng. Influencing factors of productivity in gas well and gas condensate well [J]. Lithologic Reservoirs, 2009, 21(3): 111-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Lithologic Reservoirs, 2022, 34(2): 0 .
[2] LI Zaiguang,LI Lin. Automatic mapping based on well data[J]. Lithologic Reservoirs, 2007, 19(2): 84 -89 .
[3] CHENG Yuhong,GUO Yanru,ZHENG Ximing,FANG Naizhen,MA Yuhu. The interpretation method and application effect determined by multiple seismic and logging factors[J]. Lithologic Reservoirs, 2007, 19(2): 97 -101 .
[4] LIU Juntian,JIN Zhenjia,LI Zaiguang,TAN Xinping,GUO Lin,WANG Bo,LIU Yuxiang. Controlling factors for lithologic hydrocarbon reservoirs and petroleum prospecting target in Xiaocaohu area , Taibei Sag[J]. Lithologic Reservoirs, 2007, 19(3): 44 -47 .
[5] SHANG Changliang, FU Shouxian. Application of 3D seismic survey in loess tableland[J]. Lithologic Reservoirs, 2007, 19(3): 106 -110 .
[6] WANG Changyong, ZHENG Rongcai, WANG Jianguo, CAO Shaofang, Xiao Mingguo. Sedimentary characteristics and evolution of Badaowan Formation of Lower Jurassic in northwest margin of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(2): 37 -42 .
[7] WANG Ke1 LIU Xianyang, ZHAO Weiwei, SONG Jianghai, SHI Zhenfeng, XIANG Hui. Char acter istics and geological significance of seismites of Paleogene in Yangxin Subsag of J iyang Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 54 -59 .
[8] SUN Hongbin, ZHANG Fenglian. Structural-sedimentary evolution char acter istics of Paleogene in Liaohe Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 60 -65 .
[9] LI Chuanliang. Can uplift r esult in abnormal high pr essur e in formation?[J]. Lithologic Reservoirs, 2008, 20(2): 124 -126 .
[10] WEI Qinlian,ZHENG Rongcai,XIAO Ling,MA Guofu,DOU Shijie,TIAN Baozhong. Study on horizontal heterogeneity in Serie Inferiere of Triassic in 438b block , Algeria[J]. Lithologic Reservoirs, 2009, 21(2): 24 -28 .
TRENDMD: