Lithologic Reservoirs ›› 2022, Vol. 34 ›› Issue (4): 32-41.doi: 10.12108/yxyqc.20220404

• PETROLEUM EXPLORATION • Previous Articles     Next Articles

Evolution characteristics of thermal expansion coefficient of rocks with temperature of Triassic Chang 7 organic-rich reservoir and its implications in Ordos Basin

ZHANG Yan1, HOU Lianhua1, CUI Jingwei1,2, LUO Xia1, LIN Senhu1, ZHANG Ziyun1   

  1. 1. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;
    2. Key Laboratory of Petroleum Reservoir, PetroChina, Beijing 100083, China
  • Received:2021-08-16 Revised:2021-10-20 Online:2022-07-01 Published:2022-07-07

Abstract: In-situ conversion processing(ICP)of shale underground is an effective and feasible option to realize the size development and utilization of medium to low-mature shale oil. The study of thermal expansion of shale during heating is of great significance for the engineering evaluation of wellbore stability,heater life and cap rock integrity. The thermal expansion coefficients and dynamic evolution characteristics of muddy siltstone,mudstone and shale at 25-600℃ were obtained by using DIL402 SE instrument on the basis of thin section observation and X-ray diffraction analysis of cores from three wells of Triassic Chang 7 shale layer in Ordos Basin. The results show that:(1)The thermal expansion coefficients of rocks with different lithologies in the study area differ greatly and increase with the increase of organic carbon content. The thermal expansion coefficients of rocks with TOC being less than 5% increase almost exponentially,while the thermal expansion coefficients of rocks with TOC being greater than or equal to 5% show a "four stage" complex change.(2)The anisotropy factor of the thermal expansion coefficients of organic-rich shale in the study area is the largest,which is 1.7-2.7 times in vertical bedding direction than that in parallel bedding direction.(3)The high hydrocarbon generation intensity of organic-rich shale can cause microfractures and lead to complex changes in thermal expansion.

Key words: in-situ conversion technology, organic-rich shale, thermal expansion coefficient, anisotropy factor, dynamic evolution, Chang 7 shale, Triassic, Ordos Basin

CLC Number: 

  • TE133+9
[1] 邹才能, 杨智, 张国生, 等.非常规油气地质学建立及实践[J]. 地质学报, 2019, 93(1):12-23. ZOU Caineng, YANG Zhi, ZHANG Guosheng, et al. Establishment and practice of unconventional oil and gas geology[J]. Acta Geologica Sinica, 2019, 93(1):12-23.
[2] 杨智, 侯连华, 陶士振, 等.致密油与页岩油形成条件与"甜点区"评价[J].石油勘探与开发, 2015, 42(5):555-565. YANG Zhi, HOU Lianhua, TAO Shizhen, et al.Formation conditions and "sweet spot" evaluation of tight oil and shale oil[J]. Petroleum Exploration and Development, 2015, 42(5):555-565.
[3] 赵文智, 胡素云, 侯连华.页岩油地下原位转化的内涵与战略地位[J].石油勘探与开发, 2018, 45(4):537-545. ZHAO Wenzhi, HU Suyun, HOU Lianhua. Connotation and strategic role of in-situ conversion processing of shale oil underground in the onshore China[J]. Petroleum Exploration and Development, 2018, 45(4):537-545.
[4] 张林晔, 李钜源, 李政, 等.北美页岩油气研究进展及对中国陆相页岩油气勘探的思考[J]. 地球科学进展, 2014, 29(6):700-711. ZHANG Linye, LI Juyuan, LI Zheng, et al.Advances in shale oil/gas research in North America and considerations on explora-tion for continental shale oil/gas in China[J]. Advances in Earth Science, 2014, 29(6):700-711.
[5] SIRATOVICH P A, VON AULOCK F W,LAVALLÉE Y, et al. Thermoelastic properties of the Rotokawa andesite:A geothermal reservoir constraint[J]. Journal of Volcanology and Geothermal Research, 2015, 301:1-13.
[6] 马海佳, 张海军, 张冶.基于THM的井壁稳定性分析[J].大庆石油学院学报, 2008, 32(6):50-55. MA Haijia, ZHANG Haijun, ZHANG Ye. Well bore stability based on THM[J]. Journal of Daqing Petroleum Institute, 2008, 32(6):50-55.
[7] 马天寿, 陈平.页岩地层中孔隙热弹性井眼稳定力学模型[J]. 岩石力学与工程学报, 2015, 34(增刊2):3613-3623. MA Tianshou, CHEN Ping. Porothermoelastic mechanical model of wellbore stability in shale formations[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Suppl 2):3613- 3623.
[8] 苗社强, 李和平, 周永胜.推杆式热膨胀仪测量三种岩石高温热膨胀系数[J].吉林大学学报(地球科学版), 2015, 45(增刊1):345. MIAO Sheqiang, LI Heping, ZHOU Yongsheng. Measurement of thermal expansion coefficients of three kinds of rocks with push-rod thermal dilatometer at high temperature[J]. Journal of Jilin University(Earth Science Edition), 2015, 45(Suppl 1):345.
[9] 刘海涛, 周辉, 胡大伟, 等.含层理砂岩热膨胀系数的试验研究[J].岩土力学, 2017, 38(10):2841-2846. LIU Haitao, ZHOU Hui, HU Dawei, et al. Experiment study of thermal expansion coefficient of sandstone with beddings[J]. Rock and Soil Mechanics, 2017, 38(10):2841-2846.
[10] 董付科, 冯子军, 杨栋.高温三轴应力下新疆吉木萨尔油页岩热变形特征研究[J].煤炭工程, 2019, 51(3):103-106. DONG Fuke, FENG Zijun, YANG Dong. Thermal deformation characteristics of Jimsar oil shale in Xinjiang under high temperature and triaxial stresses[J]. Coal Engineering, 2019, 51(3):103-106.
[11] GABOVA A, CHEKHONIN E, POPOV Y, et al. Experimental investigation of thermal expansion of organic-rich shales[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 132:104398.
[12] 郤保平, 何水鑫, 吴阳春, 等.原位应力状态下花岗岩热变形及热膨胀系数演变规律试验研究[J].岩土力学, 2020, 41(增刊2):1-11. XI Baoping, HE Shuixin, WU Yangchun, et al. Experimental study on evolution law of thermal deformation and thermal expansion coefficient of granite under in-situ stress state[J]. Rock and Soil Mechanics, 2020, 41(Suppl 2):1-11.
[13] 杨华, 刘显阳, 张才利, 等.鄂尔多斯盆地三叠系延长组低渗透岩性油藏主控因素及其分布规律[J].岩性油气藏, 2007, 19(3):1-6. YANG Hua, LIU Xianyang, ZHANG Caili, et al. The main controlling factors and distribution of low permeability lithologic reservoirs of Triassic Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(3):1-6.
[14] 黄彦杰, 白玉彬, 孙兵华, 等.鄂尔多斯盆地富县地区延长组长7烃源岩特征及评价[J].岩性油气藏, 2020, 32(1):66-75. HUANG Yanjie, BAI Yubin, SUN Binghua, et al. Characteristics and evaluation of Chang 7 source rock of Yanchang Formation in Fuxian area, Ordos Basin[J].Lithologic Reservoirs, 2020, 32(1):66-75.
[15] 李森, 朱如凯, 崔景伟, 等.古环境与有机质富集控制因素研究:以鄂尔多斯盆地南缘长7油层组为例[J]. 岩性油气藏, 2019, 31(1):87-95. LI Sen, ZHU Rukai, CUI Jinwei, et al. Paleoenvironment and controlling factors of organic matter enrichment:A case of Chang 7 oil reservoir in southern margin of Ordos Basin[J]. Lithologic Reservoirs, 2019, 31(1):87-95.
[16] 国吉安, 庞军刚, 王桂成, 等.鄂尔多斯盆地晚三叠世延长组湖盆演化及石油聚集规律[J]. 世界地质, 2010, 29(2):277- 283. GUO Ji'an, PANG Jungang, WANG Guicheng, et al. Lake basin evolution and petroleum accumulation of Late Triassic Yanchang Formation in Ordos Basin[J]. Global Geology, 2010, 29(2):277-283.
[17] DUAN Y, WANG C Y, ZHENG C Y, et al. Geochemical study of crude oils from the Xifeng oilfield of the Ordos Basin, China[J]. Journal of Asian Earth Sciences, 2008, 31(4/5/6):341-356.
[18] HARVEY R D.Thermal expansion of certain Illinois limestones[D]. Urbana:Illinois State Geological Survey, 1966.
[19] SOMERTON W H.Thermal properties and temperature-related behavior of rock/fluid systems[J]. Developments in Petroleum Science, 1992, 37:1-257.
[20] YARZEV V P, EROFEEV A V. Operating properties and durability of bitumen-polymer composites[M]. Tambov:FGBOU VPO, TGTU, 2004.
[21] ANDERSON D L. Theory of the earth[M]. Boston:Blackwell Scientific Publications, 1989.
[22] KAEVAND T, LILLE U. Atomistic molecular simulation of thermal volume expansion of Estonian kukersite kerogen[J]. Oil Shale, 2005, 22(3):291-303.
[23] HOU Lianhua, MA Weijiao, LUO Xia, et al.Characteristics and quantitative models for hydrocarbon generation-retentionproduction of shale under ICP conditions:Example from the Chang 7 member in the Ordos Basin[J]. Fuel, 2020, 279:118497.
[24] 于永军, 梁卫国, 毕井龙, 等.油页岩热物理特性试验与高温热破裂数值模拟研究[J].岩石力学与工程学报, 2015, 34(6):1106-1115. YU Yongjun, LIANG Weiguo, BI Jinglong, et al. Thermophysical experiment and numerical simulation on thermal cracking of oil shale at high temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6):1106-1115.
[25] 吕超, 孙强, 邓舒, 等.砂岩热物理性质的温度作用效应试验研究[J].地质与勘探, 2017, 53(4):780-787. LYU Chao, SUN Qiang, DENG Shu, et al. An experimental study on thermal physical properties of sandstone under hightemperature heating[J]. Geology and Exploration, 2017, 53(4):780-787.
[26] WEAVER C E.Thermal properties of clays and shales[R]. Oak Ridge, US:Technical Report, 1976.
[27] OJA V, YANCHILIN A, KAN T, et al. Thermo-swelling behavior of Kukersite oil shale[J]. Journal of Thermal Analysis and Calorimetry, 2015, 119(2):1163-1169.
[28] MA Weijiao, HOU Lianhua, LUO Xiao, et al. Generation and expulsion process of the Chang 7 oil shale in the Ordos Basin based on temperature-based semi-open pyrolysis:Implications for in-situ conversion process[J]. Journal of Petroleum Science and Engineering, 2020, 190:107035.
[29] ZHOU Hui, LIU Haitao, HU Dawei, et al. Anisotropies in mechanical behaviour, thermal expansion and p-wave velocity of sandstone with bedding planes[J]. Rock Mechanics and Rock Engineering, 2016, 49:4497-4504.
[30] SIEGESMUND S, ULLEMEYER K, WEISS T, et al. Physical weathering of marbles caused by anisotropic thermal expansion[J]. International Journal of Earth Sciences, 2000, 89(1):170- 182.
[31] WONG Tengfong, BRACE W F. Thermal expansion of rocks:Some measurements at high pressure[J]. Tectonophysics, 1979, 57(2/3/4):95-117.
[1] ZHAO Jun, LI Yong, WEN Xiaofeng, XU Wenyuan, JIAO Shixiang. Prediction of shale formation pore pressure based on Zebra Optimization Algorithm-optimized support vector regression [J]. Lithologic Reservoirs, 2024, 36(6): 12-22.
[2] Guan Yunwen, Su Siyu, Pu Renhai, Wang Qichao, Yan Sujie, Zhang Zhongpei, Chen Shuo, Liang Dongge. Palaeozoic gas reservoir-forming conditions and main controlling factors in Xunyi area,southern Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(6): 77-88.
[3] YIN Hu, QU Hongjun, SUN Xiaohan, YANG Bo, ZHANG Leigang, ZHU Rongxing. Characteristics of deep-water deposits and evolution law of Triassic Chang 7 reservoir in southeastern Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(5): 145-155.
[4] WANG Zixin, LIU Guangdi, YUAN Guangjie, YANG Henglin, FU Li, WANG Yuan, CHEN Gang, ZHANG Heng. Characteristics and reservoir control of source rocks of Triassic Chang 7 member in Qingcheng area,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(5): 133-144.
[5] MOU Feisheng, YIN Xiangdong, HU Cong, ZHANG Haifeng, CHEN Shijia, DAI Linfeng, LU Yifan. Distribution characteristics and controlling factors of tight oil of Triassic Chang 7 member in northern Shaanxi area,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(4): 71-84.
[6] WANG Hongbo, ZHANG Lei, CAO Qian, ZHANG Jianwu, PAN Xing. Sedimentary model of fluvial fan of Permian He-8 member in Ordos Basin and its exploration significance [J]. Lithologic Reservoirs, 2024, 36(3): 117-126.
[7] SONG Zhihua, LI Lei, LEI Dewen, ZHANG Xin, LING Xun. Application of improved U-Net network small faults identification technology to Triassic Baijiantan Formation in Mazhong area,Mahu Sag [J]. Lithologic Reservoirs, 2024, 36(3): 40-49.
[8] DUAN Yifei, ZHAO Weiwei, YANG Tianxiang, LI Fukang, LI Hui, WANG Jianan, LIU Yuchen. Source-reservoir characteristics and accumulation rules of shale gas of Permian Shanxi Formation in Yan'an area, Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(3): 72-83.
[9] CAO Jiangjun, WANG Xi, WANG Liuwei, LI Cheng, SHI Jian, CHEN Zhaobing. Characteristics and main controlling factors of interbedded shale oil reservoirs of Triassic Chang 7 member in Heshui area,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(3): 158-171.
[10] LI Qihui, REN Dazhong, NING Bo, SUN Zhen, LI Tian, WAN Cixuan, YANG Fu, ZHANG Shiming. Micro-pore structure characteristics of coal seams of Jurassic Yan’an Formation in Shenmu area,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(2): 76-88.
[11] BO Shangshang, TIAN Jixian, LI Yaoliang, WANG Yetong, WANG Hao, SUN Guoqiang. Provenance analysis of Upper Triassic Xujiahe Formation in northeastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(2): 99-112.
[12] LEI Tao, MO Songyu, LI Xiaohui, JIANG Nan, ZHU Chaobin, WANG Qiao, QU Xuejiao, WANG Jia. Sandbody superimposition patterns and oil and gas exploration significance of Permian Shanxi Formation in Daniudi gas field,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(2): 147-159.
[13] WANG Tianhai, XU Duonian, WU Tao, GUAN Xin, XIE Zaibo, TAO Huifei. Sedimentary facies distribution characteristics and sedimentary model of Triassic Baikouquan Formation in Shawan Sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(1): 98-110.
[14] YIN Lu, XU Duonian, YUE Xingfu, QI Wen, ZHANG Jijuan. Reservoir characteristics and hydrocarbon accumulation rules of Triassic Baikouquan Formation in Mahu Sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(1): 59-68.
[15] LONG Shengfang, HOU Yunchao, YANG Chao, GUO Yixuan, ZHANG Jie, ZENG Yali, GAO Nan, LI Shanghong. Sequence stratigraphy and evolution of Triassic Chang 7 to Chang 3 mebers in Qingcheng area,southwestern Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(1): 145-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Zhanlong,ZHANG Zhenggang,CHEN Qilin,GUO Jingyi,SHA Xuemei,LIU Wensu. Using multi-parameters analysis of seismic information to evaluate lithologic traps in continental basins[J]. Lithologic Reservoirs, 2007, 19(4): 57 -63 .
[2] FANG Chaohe, WANG Yifeng, ZHENG Dewen, GE Zhixin. Maceral and petrology of Lower Tertiary source rock in Qintong Sag, Subei Basin[J]. Lithologic Reservoirs, 2007, 19(4): 87 -90 .
[3] LIN Chengyan, TAN Lijuan, YU Cuiling. Research on the heterogeneous distribution of petroleum(Ⅰ)[J]. Lithologic Reservoirs, 2007, 19(2): 16 -21 .
[4] WANG Tianqi, WANG Jiangong, LIANG Sujuan, SHA Xuemei. Fine oil exploration of Putaohua Formation in Xujiaweizi area, Songliao Basin[J]. Lithologic Reservoirs, 2007, 19(2): 22 -27 .
[5] WANG Xiwen,SHI Lanting,YONG Xueshan,YNAG Wuyang. Study on seismic impedance inversion[J]. Lithologic Reservoirs, 2007, 19(3): 80 -88 .
[6] HE Zongbin,NI Jing,WU Dong,LI Yong,LIU Liqiong,TAI Huaizhong. Hydrocarbon saturation determined by dual-TE logging[J]. Lithologic Reservoirs, 2007, 19(3): 89 -92 .
[7] YUAN Shengxue,WANG Jiang. Identification of the shallow gas reservoir in Shanle area,Tuha Basin[J]. Lithologic Reservoirs, 2007, 19(3): 111 -113 .
[8] CHEN Fei,WEI Dengfeng,YU Xiaolei,WU Shaobo. Sedimentary facies of Chang 2 oil-bearing member of Yanchang Formation in Yanchi-Dingbian area, Ordos Basin[J]. Lithologic Reservoirs, 2010, 22(1): 43 -47 .
[9] XU Yunxia,WANG Shanshan,YANG Shuai. Using Walsh transform to improve signal-to-noise ratio of seismic data[J]. Lithologic Reservoirs, 2009, 21(3): 98 -100 .
[10] LI Jianming,SHI Lingling,WANG Liqun,WU Guangda. Characteristics of basement reservoir in Kunbei fault terrace belt in southwestern Qaidam Basin[J]. Lithologic Reservoirs, 2011, 23(2): 20 -23 .
TRENDMD: