Lithologic Reservoirs ›› 2025, Vol. 37 ›› Issue (3): 153-164.doi: 10.12108/yxyqc.20250314

• PETROLEUM EXPLORATION • Previous Articles    

Study on NMR response mechanism and pore structure evaluation method of basic volcanic rock:A case study of Permian Emeishan Basalt Formation in southwestern Sichuan Basin

ZHAO Ailin1,2, LAI Qiang1,2, FAN Ruiqi2, WU Yuyu1, CHEN Jie2, YAN Shuanglan2, ZHANG Jiawei2, LIAO Guangzhi2   

  1. 1. Exploration and Development Research Institute, PetroChina Southwest Oil & Gas field Company, Chengdu 610041, China;
    2. National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum(Beijing), Beijing 102249, China
  • Received:2024-03-26 Revised:2024-10-28 Published:2025-05-10

Abstract: Taking Permian Emeishan Basalt Formation in southwestern Sichuan Basin as a case study,based on petrological characteristics and nuclear magnetic resonance relaxation mechanism of basic volcanic rocks,the effects of internal magnetic field gradients and paramagnetic mineral content on T2 spectra were analyzed by using a combination of numerical simulations of internal magnetic field gradients and variable echo time NMR experiments. A new method for characterizing the pore structure of basic volcanic rocks was proposed. The results show that:(1)The volcanic reservoirs in the study area are mainly composed of basalt volcanic clastic lava,calcareous breccia lava,and basaltic rock. The mineral composition of both calcareous breccia lava and basaltic volcanic debris lava is mainly composed of calcite,quartz,plagioclase,and clay minerals. The average mass fractions of clay minerals are 27% and 32%,respectively,with chlorite accounting for 84% and 33% of clay minerals,respectively.(2)The content of paramagnetic minerals(chlorite+iron containing minerals)in basic volcanic rocks is relatively high,which can generate strong internal magnetic field gradients during NMR measurements. Under high internal magnetic field gradient,as echo time increases,the main peak of the T2 spectrum shifts toward shorter relaxation times,the overall spectrum area gradually decreases,and lead to a smaller nuclear magnetic porosity. The larger the internal magnetic field gradient value,the more distorted the geometric shape of the pores and the smaller the pore size. The internal magnetic field gradient has the greatest impact on calcareous breccia lava,followed by basaltic volcanic debris lava,and has the least impact on diabase porphyry.(3)Establishing a porosity correction formula based on relative error of nuclear magnetic porosity and paramagnetic mineral content through data fitting,converting T1 spectrum into pore size distribution based on the feature that T1 measurement is almost not affected by internal gradient magnetic field,establishing the relationship between the geometric mean value of T1 and T2 spectrum,correcting the peak shift of the T2 spectrum,converting T2 spectrum into pore size distribution,and then T2 NMR pore structure evaluation can be achieved(. 4)The relative error between nuclear magnetic porosity calculated by this method and the logging porosity is 15%,the relative error of the average pore throat radius between calculated by the method described and from CT digital core experiment is 6%,the distribution of the basic volcanic rocks in the study area are highly heterogeneous,mainly consisting of small and medium-sized pores throats.

Key words: basic volcanic rocks, nuclear magnetic resonance, transverse relaxation time, internal magnetic field gradient, paramagnetic minerals, numerical simulation, pore structure, Permian, Sichuan Basin

CLC Number: 

  • TE122
[1] 毛治国,崔景伟,綦宗金,等. 风化壳储层分类、特征及油气勘探方向[J]. 岩性油气藏,2018,30(2):12-22. MAO Zhiguo,CUI Jingwei,QI Zongjin,et al. Classification, characteristics and petroleum exploration of weathering crust reservoir[J]. Lithologic Reservoirs,2018,30(2):12-22.
[2] 张文播,李亚,杨田,等. 四川盆地简阳地区二叠系火山碎屑岩储层特征与成岩演化[J]. 岩性油气藏,2024,36(2):136-146. ZHANG Wenbo,LI Ya,YANG Tian,et al. Characteristics and diagenetic evolution of Permian pyroclastic reservoirs in Jianyang area,Sichuan Basin[J]. Lithologic Reservoirs,2024,36(2):136-146.
[3] LI Shuai,YANG Shenglai,JIN Lei,et al. Investigation on pore structure,fluid mobility and water huff-n-puff oil recovery of tight volcanic oil reservoir[J]. Journal of Petroleum Science & Engineering,2022,215:2-18.
[4] 任大忠,周兆华,梁睿翔,等. 致密砂岩气藏黏土矿物特征及其对储层性质的影响:以鄂尔多斯盆地苏里格气田为例[J]. 岩性油气藏,2019,31(4):42-53. REN Dazhong,ZHOU Zhaohua,LIANG Ruixiang,et al. Characteristics of clay minerals and its impacts on reservoir quality of tight sandstone gas reservoir:A case from Sulige Gas Field, Ordos Basin[J]. Lithologic Reservoirs,2019,31(4):42-53.
[5] WANG Pengfei,JIANG Zhenxue,YIN Lishi,et al. Lithofacies classification and its effect on pore structure of the Cambrian marine shale in the Upper Yangtze Platform,South China:Evidence from FE-SEM and gas adsorption analysis[J]. Journal of Petroleum Science & Engineering,2017,156:307-321.
[6] 单玄龙,邹玉洁,衣健,等. 盆地火山岩相研究进展:基性火山熔岩及水下喷发火山岩相新成果[J].吉林大学学报(地球科学版),2024,54(3):721-734. SHAN Xuanlong,ZOU Yujie,YI Jian,et al. Progress of basin volcanic facies:New results of intermediate-mafic volcanic lava and volcanic facies of subaqueous eruption[J]. Journal of Jilin University:Earth Science Edition,2024,54(3):721-734.
[7] 汤庆艳,李璐,张燕,等. 峨眉山大火成岩省含钒钛磁铁矿镁铁-超镁铁质侵入体中磷灰石主量元素地球化学特征及成岩成矿条件[J]. 岩石学报,2024,40(7):2169-2185. TANG Qingyan,LI Lu,ZHANG Yan,et al. Major element geochemistry of apatite from Fe-Ti-V oxide-bearing mafic-ultramafic intrusions in the Emeishan large igneous province and their petrogenesis and mineralization[J]. Acta Petrologica Sinica,2024, 40(7):2169-2185.
[8] 熊连桥,于福生,姚根顺,等. 砂砾岩储层中黄铁矿的油气地质意义:以准噶尔盆地车60井区齐古组为例[J]. 岩性油气藏,2017,29(4):73-80. XIONG Lianqiao,YU Fusheng,YAO Genshun,et al. Petroleum geological significance of pyrite in glutenite reservoirs:A case of Qigu Formation in Che 60 well field,Junggar Basin[J]. Lithologic Reservoirs,2017,29(4):73-80.
[9] 司马立强,赵辉,戴诗华. 核磁共振测井在火成岩地层应用的适应性分析[J]. 地球物理学进展,2012,27(1):145-152. SIMA Liqiang,ZHAO Hui,DAI Shihua. Analysis of adaptability of application of NMR logging in igneous rock reservoirs[J]. Progress in Geophysics,2012,27(1):145-152.
[10] 廖广志,肖立志,谢然红,等. 内部磁场梯度对火山岩核磁共振特性的影响及其探测方法[J]. 中国石油大学学报(自然科学版),2009,33(5):56-60. LIAO Guangzhi,XIAO Lizhi,XIE Ranhong,et al. Influence of internal magnetic field gradient on nuclear magnetic resonance of volcanic rocks and its detection method[J]. Journal of China University of Petroleum(Edition of Natural Science),2009,33(5):56-60.
[11] 史飞洲,王彦春,孙炜,等. 核磁共振测井资料在滴西地区火成岩中的应用效果分析[J]. 新疆石油地质,2016,37(5):593-597. SHI Feizhou,WANG Yanchun,SUN Wei,et al. Analysis on application effect of NMR logging data in igneous rocks in district Dixi[J]. Xinjiang Petroleum Geology,2016,37(5):593-597.
[12] 屈乐,孙卫,章海宁,等. 火成岩储层核磁共振岩石物理影响特征[J]. 兰州大学学报(自然科学版),2014,50(1):26-30. QU Le,SUN Wei,ZHANG Haining,et al. Characteristics of petrophysical impact on the nuclear magnetic resonance in igneous reservoir[J]. Journal of Lanzhou University(Natural Science),2014,50(1):26-30.
[13] 李晓峰,李庆峰,董丽欣. 中基性火山岩顺磁物质对核磁共振孔隙度的影响分析[J]. 测井技术,2014,38(5):522-525. LI Xiaofeng,LI Qingfeng,DONG Lixin. On impact of paramagnetic substances on nuclear magnetic porosity of intermediate to basic volcanic rocks[J]. Well Logging Technology, 2014,38(5):522-525.
[14] 高衍武,赵延静,吴伟,等. 顺磁性物质含量对火山岩核磁孔隙度的影响及校正:以准噶尔盆地中拐凸起石炭系火山岩为例[J]. 长江大学学报(自然科学版),2021,18(6):26-32. GAO Yanwu,ZHAO Yanjing,WU Wei,et al. Influence of paramagnetic material content on nuclear magnetic porosity of volcanic rocks and its correction:Taking Carboniferous volcanic rocks in Zhongguai uplift of Junggar Basin as an example[J]. Journal of Yangtze University(Natural Science Edition),2021, 18(6):26-32.
[15] 孙军昌,郭和坤,杨正明,等. 不同岩性火山岩气藏岩芯核磁孔隙度实验研究[J]. 西南石油大学学报(自然科学版), 2011,33(5):27-34. SUN Junchang,GUO Hekun,YANG Zhengming,et al. Experimental study of the NMR porosity of different lithologic volcanicrock core samples[J]. Journal of Southwest Petroleum University(Science & Technology Edition),2011,33(5):27-34.
[16] 文龙,李亚,易海永,等. 四川盆地二叠系火山岩岩相与储层特征[J]. 天然气工业,2019,39(2):17-27. WEN Long,LI Ya,YI Haiyong,et al. Lithofacies and reservoir characteristics of Permian volcanic rocks in the Sichuan Basin[J]. Natural Gas Industry,2019,39(2):17-27.
[17] BEHRENBRUCH P,BINIWALE S. Characterisation of clastic depositional environments and rock pore structures using the Carman-Kozeny equation:Australian sedimentary basins[J]. Journal of Petroleum Science & Engineering,2005,47(3/4):175-196.
[18] 唐华风,王璞珺,边伟华,等. 火山岩储层地质研究回顾[J]. 石油学报,2020,41(12):1744-1773. TANG Huafeng,WANG Pujun,BIAN Weihua,et al. Review of volcanic reservoir geology[J]. Acta Petrolei Sinica,2020,41(12):1744-1773.
[19] 牛嘉玉,张映红,袁选俊,等. 中国东部中、新生代火成岩石油地质研究、油气勘探前景及面临问题[J]. 特种油气藏,2003, 10(1):7-12. NIU Jiayu,ZHANG Yinghong,YUAN Xuanjun,et al. Petroleum geology study,oil and gas exploration future and problems faced in Mesozoic and Cenozoic igneous rocks in eastern China[J]. Special Oil & Gas Reservoirs,2003,10(1):7-12.
[20] 王敏,曹玥,李万才,等. 基于孔隙结构和核磁测井建立火山岩储层分类标准:以松南断陷查干花气田为例[J]. 油气藏评价与开发,2024,14(2):216-223. WANG Min,CAO Yue,LI Wancai,et al. Establishing classification standards for volcanic reservoirs based on pore structure and nuclear magnetic logging:A case study of Chaganhua Gas Field in Songnan Fault Depression[J]. Petroleum Reservoir Evaluation and Development,2024,14(2):216-223.
[21] 刘亚明,王丹丹,田作基,等. 巴西桑托斯盆地复杂碳酸盐岩油田火成岩发育特征及预测方法[J]. 岩性油气藏,2023,35(6):127-137. LIU Yaming,WANG Dandan,TIAN Zuoji,et al. Characteristics and prediction methods of igneous rocks in complex carbonate oilfields in Santos Basin,Brazil[J]. Lithologic Reservoirs,2023,35(6):127-137.
[22] 柴毓,王贵文,柴新. 四川盆地金秋区块三叠系须二段储层非均质性及成因[J]. 岩性油气藏,2021,33(4):29-40. CHAI Yu,WANG Guiwen,CHAI Xin. Reservoir heterogeneity and genesis of the second member of Xujiahe Formation of Triassic in Jinqiu block,Sichuan Basin[J]. Lithologic Reservoirs, 2021,33(4):29-40.
[23] 罗旭东,邓世坤,冯芸,等. 火山岩储层分类方法在克百断裂带一区石炭系的应用[J]. 特种油气藏,2023,30(1):57-64. LUO Xudong,DENG Shikun,FENG Yun,et al. Application of volcanic rock reservoir classification method to carboniferous system in Kebai Fault area 1[J]. Special Oil & Gas Reservoirs, 2023,30(1):57-64.
[24] 刘鑫,夏茂龙,吴煜宇,等. 四川盆地永探1井二叠系火山碎屑熔岩储层特征[J]. 天然气勘探与开发,2019,42(4):28-36. LIU Xin,XIA Maolong,WU Yuyu,et al. Characteristics of Permian volcaniclastic lava reservoirs in Yongtan 1 well,Sichuan Basin[J]. Natural Gas Exploration and Development, 2019,42(4):28-36.
[25] BERGER A,GIER S,KROIS P. Porosity-preserving chlorite cements in shallow-marine volcaniclastic sandstones:Evidence from Cretaceous sandstones of the Sawan gas field,Pakistan[J]. AAPG Bulletin,2009,93(5):595-615.
[26] BROWNSTEIN K R,TARR C E. Spin-lattice relaxation in a system governed by diffusion[J]. Journal of Magnetic Resonance (1969),1977,26(1):17-24.
[27] AN Senyou,YAO Jun,YANG Yongfei,et al. Influence of pore structure parameters on flow characteristics based on a digital rock and the pore network model[J]. Journal of Natural Gas Science and Engineering,2016,31:156-163.
[28] BLOEMBERGEN N,PURCELL E M,POUND R V. Relaxation effects in nuclear magnetic resonance absorption[J]. Physical Review,1948,73(7):679-712.
[29] BUTLER J P,REEDS J A,DAWSON S V. Estimating solutions of first kind integral equations with nonnegative constraints and optimal smoothing[J]. SIAM Journal on Numerical Analysis, 1981,18(3):381-397.
[30] THOMEER J. Introduction of a pore geometrical factor defined by the capillary pressure curve[J]. Journal of Petroleum Technology,1960,12(3):73-77.
[31] 向雪冰,司马立强,王亮,等. 页岩气储层孔隙流体划分及有效孔径计算:以四川盆地龙潭组为例[J]. 岩性油气藏,2021, 33(4):137-146. XIANG Xuebing,SIMA Liqiang,WANG Liang,et al. Pore fluid division and effective pore size calculation of shale gas reservoir:A case study of Longtan Formation in Sichuan Basin[J]. Lithologic Reservoirs,2021,33(4):137-146.
[32] 刘欢,徐锦绣,陈红兵,等. 基于核磁共振测井校正的泥质砂岩气层孔隙度计算方法[J]. 中国海上油气,2023,35(3):89-95. LIU Huan,XU Jinxiu,CHEN Hongbing,et al. A method for calculating porosity of shale sandstone gas reservoir based on nuclear magnetic resonance logging calibrated[J]. China Offshore Oil and Gas,2023,35(3):89-95.
[1] YANG Xu, BAI Mingsheng, GONG Hanbo, LI Gao, TAO Zuwen. Characteristics and quantitative prediction of structural fractures in the second member of Triassic Xujiahe Formation in Xinchang area, western Sichuan Basin [J]. Lithologic Reservoirs, 2025, 37(3): 73-83.
[2] YANG Xue, YANG Yuran, ZHANG Jingyuan, TIAN He, WANG Qing, SONG Fang, ZHANG Saike, CHEN Yao. Characteristics and formation mechanism of Permian marine shale of Kaijiang-Liangping trough in northern Sichuan Basin [J]. Lithologic Reservoirs, 2025, 37(3): 108-119.
[3] HE Xiaolong, ZHANG Bing, XU Chuan, XIAO Bin, TIAN Yunying, LI Zhuo, HE Yifan. Characteristics of calcareous interlayer in narrow channel sand body and their influence on reservoir quality:A case study of the first member of Jurassic Shaximiao Formation in Zitong area,northwestern Sichuan Basin [J]. Lithologic Reservoirs, 2025, 37(3): 129-139.
[4] LI Ling, DENG Yu, ZHANG Xinyu, LUO Wenjun, ZHAO Dongfang, ZENG Jianjun, LIU Yun, TAN Xiucheng. Genesis and geological significance of foam-spongy dolomite in the second member of Sinian Dengying Formation in Penglai-Gaomo area, central Sichuan [J]. Lithologic Reservoirs, 2025, 37(2): 60-69.
[5] LI Ya, WANG Wei, ZHAO Like, LIU Ran, ZHANG Xihua, CHEN Yangui, HUANG Tianhai, XIAO Di. Sedimentary evolution and favorable reservoir distribution of Permian Qixia Formation in the southern margin of Deyang-Mianyang Sag, Sichuan Basin [J]. Lithologic Reservoirs, 2025, 37(2): 81-91.
[6] WU Guanhua, LIU Hong, SONG Linke, ZENG Qi, YANG Tao. The deposition characteristics and favorable reservoir prediction of Jurassic Shaximiao Formation in Dongguachang area, southwestern Sichuan Basin [J]. Lithologic Reservoirs, 2025, 37(2): 92-102.
[7] ZHANG Kun, LIU Hong, TAN Lei, LIANG Feng, WANG Lien, MA Zike, LIU Bowen, YANG Mengxiang. Seismic sedimentology characteristics of the second member of Sinian Dengying Formation in Penglai area, north-central Sichuan Basin [J]. Lithologic Reservoirs, 2025, 37(2): 189-200.
[8] LUO Bing, WEN Huaguo, LIAO Yisha, ZHANG Bing, YAO Yongjun, WEN Siyu, YANG Kai. Shale reservoirs characteristics and favorable areas distribution of the second member of Permian Wujiaping Formation in northeastern Sichuan Basin [J]. Lithologic Reservoirs, 2025, 37(1): 1-12.
[9] HE Yan, XU Weina, DANG Sisi, MOU Lei, LIN Shaoling, LEI Zhangshu. Genesis and exploration significance of calcareous intercalation of Jurassic Xishanyao Formation in Luliang area,Junggar Basin [J]. Lithologic Reservoirs, 2025, 37(1): 90-101.
[10] QIAN Yongxin, ZHAO Yi, LIU Xinlong, LIU Hong, LIU Guoliang, ZHU Tao, ZOU Yang, CHEN Fangwen. Reservoir characteristics and high yield control factors of Permian Fengcheng Formation shale oil reservoir in Mahu Sag [J]. Lithologic Reservoirs, 2025, 37(1): 115-125.
[11] YANG Jie, ZHANG Wenping, DING Chaolong, SHI Cunying, MA Yunhai. Characteristics and main controlling factors of tight gas reservoirs in the second member of Triassic Xujiahe Formation,central Sichuan Basin [J]. Lithologic Reservoirs, 2025, 37(1): 137-148.
[12] CHEN Xiao, MIAO Yun, LI Wei, XIE Mingying, SHI Hao, WANG Weifeng. Calculation method for reasonable oil-water well ratio in the edge water drive offshore sandstone oilfield [J]. Lithologic Reservoirs, 2025, 37(1): 194-200.
[13] YAN Xueying, SANG Qin, JIANG Yuqiang, FANG Rui, ZHOU Yadong, LIU Xue, LI Shun, YUAN Yongliang. Main controlling factors for the high yield of tight oil in the Jurassic Da’anzhai Section in the western area of Gongshanmiao, Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(6): 98-109.
[14] BAI Yubin, LI Mengyao, ZHU Tao, ZHAO Jingzhou, REN Haijiao, WU Weitao, WU Heyuan. Geochemical characteristics of source rocks and evaluation of shale oil “sweet spot”of Permian Fengcheng Formation in Mahu Sag [J]. Lithologic Reservoirs, 2024, 36(6): 110-121.
[15] WANG Yifeng, TIAN Jixian, LI Jian, QIAO Tong, LIU Chenglin, ZHANG Jingkun, SHA Wei, SHEN Xiaoshuang. Geochemical characteristics of Permian condensate oil and gas and phase types in southwest of Mahu Sag [J]. Lithologic Reservoirs, 2024, 36(6): 149-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
TRENDMD: