Lithologic Reservoirs ›› 2025, Vol. 37 ›› Issue (3): 185-193.doi: 10.12108/yxyqc.20250317

• PETROLEUM ENGINEERING AND OIL & GAS FIELD DEVELOPMENT • Previous Articles    

The application of random forest algorithm in predicting the casing deformation of hydraulic fracturing

LIN He, DU Jinling, XU Gang, RONG Jiaojun, LIANG Xueli, HENG Feng, GUO Junning, MA Mengxi   

  1. BGP INC., China National Petroleum Corporation, Zhuozhou 072750, Hebei, China
  • Received:2024-06-26 Revised:2024-08-05 Published:2025-05-10

Abstract: Taking 12 casing-deformed horizontal wells in the Permian Lucaogou Formation of the Jimsar Sag as the research object,based on three-dimension seismic attribute data,a comparative analysis is conducted to examine the correspondence between casing deformation locations induced by geological factors and the development of natural fractures. A risk prediction model for casing deformation locations is established using the Random Forest algorithm from machine learning. The result shows that:(1)Casing deformation occurs primarily at locations where natural fracture zones develop and at boundaries of reservoir heterogeneity,with a nonlinear correlation between the two.(2)The number of decision trees and the number of features for node splitting in the Random Forest casing deformation risk prediction model are optimized using grid search and 5-fold crossvalidation. Considering both computational accuracy and efficiency,the optimal number of features for node splitting is set to 2,and the number of decision trees is set to 100.(3)The application of actual data shows that the Random Forest algorithm achieves a prediction accuracy of 87.85% for casing deformation locations in the tight oil reservoirs of the Permian Lucaogou Formation in the Jimsar Sag. The risk prediction results output by the model can provide guidance for optimizing fracturing designs and adjusting construction parameters.

Key words: machine learning, random forest algorithm, hydraulic fracturing, casing deformation, Lucaogou Formation, Permian, Jimsar Sag

CLC Number: 

  • TE357.1
[1] 王民,石蕾,王文广,等. 中美页岩油、致密油发育的地球化学特征对比[J]. 岩性油气藏,2014,26(3):67-73. WANG Min,SHI Lei,WANG Wenguang,et al. Comparative study on geochemical characteristics of shale oil between China and U.S.A[J]. Lithologic Reservoirs,2014,26(3):67-73.
[2] 杜金玲,林鹤,纪拥军,等. 地震与微地震融合技术在页岩油压后评估中的应用[J]. 岩性油气藏,2021,33(2):127-134. DU Jinling,LIN He,JI Yongjun,et al. Application of seismic and microseismic data fusion technology in post-fracturing evaluation of shale oil reservoir[J]. Lithologic Reservoirs, 2021,33(2):127-134.
[3] 邱振,李建忠,吴晓智,等. 国内外致密油勘探现状、主要地质特征及差异[J]. 岩性油气藏,2015,27(4):119-126. QIU Zhen,LI Jianzhong,WU Xiaozhi,et al. Exploration status,main geologic characteristics and their differences of tight oil between America and China[J]. Lithologic Reservoirs, 2015,27(4):119-126.
[4] TONG Hengmao,ZHANG Ping,ZHANG Hongxiang,et al. Geomechanical mechanisms and prevention countermeasures of casing deformation in shale gas horizontal wells[J]. Natural Gas Industry B,2021,41(1):189-197.
[5] 徐田录,吴承美,张金凤,等. 吉木萨尔凹陷二叠系芦草沟组页岩油储层天然裂缝特征与压裂模拟[J]. 岩性油气藏, 2024,36(4):35-43. XU Tianlu,WU Chengmei,ZHANG Jinfeng,et al. Natural fracture characteristics and fracture network simulation in shale reservoirs of Permian Lucaogou Formation in Jimsar Sag[J]. Lithologic Reservoirs,2024,36(4):35-43.
[6] 王正和,余谦. 准南上二叠统芦草沟组非常规油气储层特征[J]. 岩性油气藏,2017,29(5):28-35. WANG Zhenghe,YU Qian. Unconventional reservoir characteristics of Upper Permian Lucaogou Formation in southern margin of Junggar Basin[J]. Lithologic Reservoirs,2017,29(5):28-35.
[7] 路千里,刘壮,郭建春,等. 水力压裂致套管剪切变形机理及套变量计算模型[J]. 石油勘探与开发,2021,48(2):394-401. LU Qianli,LIU Zhuang,GUO Jianchun,et al. Hydraulic fracturing induced casing shear deformation and a prediction model of casing deformation[J]. Petroleum Exploration and Development,2021,48(2):394-401.
[8] 席岩,李军,柳贡慧,等. 页岩气水平井多级压裂过程中套管变形研究综述[J]. 特种油气藏,2019,26(1):1-6. XI Yan,LI Jun,LIU Gonghui,et al. Overview of casing deformation in multistage fracturing of shale gas horizontal wells[J]. Special Oil & Gas Reservoirs,2019,26(1):1-6.
[9] 毛良杰,林颢屿,余星颖,等. 页岩气储层断层滑移对水平井套管变形的影响[J]. 断块油气田,2021,28(6):755-760. MAO Liangjie,LIN Haoyu,YU Xingying,et al. Influence of fault slip on casing deformation of horizontal well in shale gas reservoir[J]. Fault-block Oil & Gas Field,2021,28(6):755-760.
[10] BENEDETTO F,PRIETO A,CODEGA D,et al. Casing failure analysis in unconventional wells and its possible solutions[R]. Buenos Aires,SPE/AAPG/SEG Latin America Unconventional Resources Technology Conference,2020.
[11] SUGDEN C,JOHNSON J,CHAMBERS M,et al. Special considerations in the design optimization of the production casing in high-rate,multistage-fractured shale wells[J]. SPE Drilling & Completion,2012,27(4):459-472.
[12] SKOMEDAL E,PARK J,HUYNH D V,et al. Formation induced well deformation[R]. London,SPE Europec Featured at 81st EAGE Conference and Exhibition,2019.
[13] ADAMS A J,MACEACHRAN A. Impact on casing design of thermal expansion of fluids on confined annuli[J]. SPE Drilling & Completion,1994,9(3):210-216.
[14] ZOBACK M D,KOHLI A,DAS I,et al. The importance of slow slip on faults during hydraulic fracturing stimulation of shale gas reservoirs[R]. Pittsburgh,SPE Americas Unconventional Resources Conference,2012.
[15] 闫建平,来思俣,郭伟,等. 页岩气井地质工程套管变形类型及影响因素研究进展[J]. 岩性油气藏,2024,36(5):1-14. YAN Jianping,LAI Siyu,GUO Wei,et al. Research progress on casing deformation types and influencing factors in geologi-cal engineering of shale gas wells[J]. Lithologic Reservoirs, 2024,36(5):1-14.
[16] 袁光杰,王向阳,乔磊,等. 页岩气井压裂套管变形机理及物理模拟分析[J]. 天然气工业,2023,43(11):137-145. YUAN Guangjie,WANG Xiangyang,QIAO Lei,et al. Mechanism of casing deformation induced by shale gas well fracturing and its physical simulation analysis[J]. Natural Gas Industry,2023,43(11):137-145.
[17] 桂俊川,桑宇,曾波,等. 基于断层滑移理论的页岩地层套管变形风险评价方法及应用[J]. 应用地球物理,2023,20(2):209-224. GUI Junchuan,SANG Yu,ZENG Bo,et al. Casing deformation risk assessment method based on fault-slip theory and its application to shale formations[J]. Applied Geophysics,2023,20(2):209-224.
[18] 李凡华,董凯,付盼,等. 页岩气水平井大型体积压裂套损预测和控制方法[J]. 天然气工业,2019,39(4):69-75. LI Fanhua,DONG Kai,FU Pan,et al. Prediction and control of casing damage in large volume fracturing of horizontal gas wells[J]. Natural Gas Industry,2019,39(4):69-75.
[19] 张平,何昀宾,刘子平,等. 页岩气水平井套管的剪压变形试验与套变预防实践[J]. 天然气工业,2021,41(5):84-91. ZHANG Ping,HE Yunbin,LIU Ziping,et al. Shear compression deformation test and deformation prevention practice of casing in shale gas horizontal wells[J]. Natural Gas Industry, 2021,41(5):84-91.
[20] 金其虎,刘臣,林鹤,等. 套管变形地球物理预警技术研究[R]. 北京:国际石油石化技术会议,2021. JIN Qihu,LIU Chen,LIN He,et al. Research on warning technology of casing-deformation by geophysical[R]. Beijing,The International Petroleum & Petrochemical Technology Conference,2021.
[21] 韩玲玲,李熙喆,刘照义,等. 川南泸州深层页岩气井套变主控因素与防控对策[J]. 石油勘探与开发,2023,50(4):853-861. HAN Lingling,LI Xizhe,LIU Zhaoyi,et al. Influencing factors and prevention measures of casing deformation in deep shale gas wells in Luzhou block,southern Sichuan Basin,SW China[J]. Petroleum Exploration and Development,2023,50(4):853-861.
[22] 林鹤,赵予凤,徐刚,等. 吉木萨尔页岩油水力压裂套管变形预测方法[R]. 海口:中国石油物探学术年会,2022. LIN He,ZHAO Yufeng,XU Gang,et al. Prediction method for casing deformation of hydraulic fracturing in Jimusaer shale oil[R]. Haikou,Collected Papers of China Petroleum Geophysical Exploration Academic Annual Conference,2022.
[23] 张丽萍,杜金玲,田志宏,等. 新疆油田利用地震资料预测套管变形技术[J]. 新疆石油天然气,2022,18(3):86-91. ZHANG Liping,DU Jinling,TIAN Zhihong,et al. Application of seismic-based casing deformation prediction technology in Xinjiang Oil Field[J]. Xinjiang Oil & Gas,2022,18(3):86-91.
[24] 李菊花,秦顺利,王洁,等. 随机森林算法在吉木萨尔页岩油藏中的应用[J]. 长江大学学报(自然科学版),2023,20(2):69-76. LI Juhua,QIN Shunli,WANG Jie,et al. Application of random forest algorithm in Jimsar shale reservoir[J]. Journal of Yangtze University(Natural Science Edition),2023,20(2):69-76.
[25] 谭辰阳,张占松,周雪晴,等. 基于随机森林算法的煤层气产能模式识别模型[J]. 煤矿安全,2022,53(2):170-178. TAN Chenyang,ZHANG Zhansong,ZHOU Xueqing,et al. Pattern recognition model of coalbed methane productivity based on random forest algorithm[J]. Safety in Coal Mines,2022,53(2):170-178.
[26] 王妍,王若谷,魏克颖,等. 基于随机森林的致密储层分类:以延安气田东部盒8段为例[J]. 西安石油大学学报(自然科学版),2021,36(6):1-8. WANG Yan,WANG Ruogu,WEI Keying,et al. Classification of tight reservoirs based on random foreast algorithm:A case study of He 8 Member in east of Yan'an Gasfield[J]. Journal of Xi'an Shiyou University(Natural Science Edition),2021, 36(6):1-8.
[27] BREIMAN L. Random forests[J]. Machine Learning,2001,45(1):5-32.
[28] BREIMAN L. Bagging predictors[J]. Machine Learning, 1996,24(2):123-140.
[29] 王静波,敬朋贵,陈祖庆,等. 面向深层页岩气"甜点"预测的地震勘探技术进展:以DX探区全方位三维地震为例[J]. 石油物探,2023,62(6):1154-1167. WANG Jinbo,JING Penggui,CHEN Zuqing,et al. Recent seismic technology advances for deep shale gas "sweet spot" prediction:A case study on full-azimuth 3D seismic exploration in DX[J]. Geophysical Prospecting for Petroleum,2023,62(6):1154-1167.
[30] 陈刚,李世昌,宋斯宇,等. 地震叠后和叠前混合驱动下的页岩油储层多尺度裂缝预测方法[J]. 地球物理学报,2024,67(7):2830-2849. CHEN Gang,LI Shichang,SONG Siyu,et al. Multi-scale fracture prediction of shale oil reservoir driven by the combination of post-stack and pre-stack seismic data[J]. Chinese Journal of Geophysics(in Chinese),2024,67(7):2830-2849.
[31] 宋志华,李垒,雷德文,等. 改进的U-Net网络小断层识别技术在玛湖凹陷玛中地区三叠系白碱滩组的应用[J]. 岩性油气藏,2024,36(3):40-49. SONG Zhihua,LI Lei,LEI Dewen,et al. Application of improved U-Net network small faults identification technology to Triassic Baijiantan Formation in Mazhong area,Mahu Sag[J]. Lithologic Reservoirs,2024,36(3):40-49.
[32] 崔立杰,何幼斌,王锦喜,等. 基于层面的地震曲率属性在碳酸盐岩断裂预测中的应用:以塔里木盆地塔北某区块为例[J]. 岩性油气藏,2012,24(1):92-96. CUI Lijie,HE Youbin,WANG Jinxi,et al. Application of seismic curvature based on horizon to carbonate fault prediction:An example of an area in Tabei,Tarim Basin[J]. Lithologic Reservoirs,2012,24(1):92-96.
[33] 计玉冰,郭冰如,梅珏,等. 四川盆地南缘昭通示范区罗布向斜志留系龙马溪组页岩储层裂缝建模[J]. 岩性油气藏, 2024,36(3):137-145. JI Yubing,GUO Bingru,MEI Jue,et al. Fracture modeling of shale reservoirs of Silurian Longmaxi Formation in Luobu syncline in Zhaotong National Shale Gas Demonstration Area, southern margin of Sichuan Basin[J]. Lithologic Reservoirs, 2024,36(3):137-145.
[34] 刘敏,郎荣玲,曹永斌. 随机森林中树的数量[J]. 计算机工程与应用,2015,51(5):126-131. LIU Min,LANG Rongling,CAO Yongbin. Number of trees in random forest[J]. Computer Engineering and Applications, 2015,51(5):126-131.
[1] YANG Xue, YANG Yuran, ZHANG Jingyuan, TIAN He, WANG Qing, SONG Fang, ZHANG Saike, CHEN Yao. Characteristics and formation mechanism of Permian marine shale of Kaijiang-Liangping trough in northern Sichuan Basin [J]. Lithologic Reservoirs, 2025, 37(3): 108-119.
[2] ZHAO Ailin, LAI Qiang, FAN Ruiqi, WU Yuyu, CHEN Jie, YAN Shuanglan, ZHANG Jiawei, LIAO Guangzhi. Study on NMR response mechanism and pore structure evaluation method of basic volcanic rock:A case study of Permian Emeishan Basalt Formation in southwestern Sichuan Basin [J]. Lithologic Reservoirs, 2025, 37(3): 153-164.
[3] LI Ya, WANG Wei, ZHAO Like, LIU Ran, ZHANG Xihua, CHEN Yangui, HUANG Tianhai, XIAO Di. Sedimentary evolution and favorable reservoir distribution of Permian Qixia Formation in the southern margin of Deyang-Mianyang Sag, Sichuan Basin [J]. Lithologic Reservoirs, 2025, 37(2): 81-91.
[4] LUO Bing, WEN Huaguo, LIAO Yisha, ZHANG Bing, YAO Yongjun, WEN Siyu, YANG Kai. Shale reservoirs characteristics and favorable areas distribution of the second member of Permian Wujiaping Formation in northeastern Sichuan Basin [J]. Lithologic Reservoirs, 2025, 37(1): 1-12.
[5] QIAN Yongxin, ZHAO Yi, LIU Xinlong, LIU Hong, LIU Guoliang, ZHU Tao, ZOU Yang, CHEN Fangwen. Reservoir characteristics and high yield control factors of Permian Fengcheng Formation shale oil reservoir in Mahu Sag [J]. Lithologic Reservoirs, 2025, 37(1): 115-125.
[6] BAI Yubin, LI Mengyao, ZHU Tao, ZHAO Jingzhou, REN Haijiao, WU Weitao, WU Heyuan. Geochemical characteristics of source rocks and evaluation of shale oil “sweet spot”of Permian Fengcheng Formation in Mahu Sag [J]. Lithologic Reservoirs, 2024, 36(6): 110-121.
[7] WANG Yifeng, TIAN Jixian, LI Jian, QIAO Tong, LIU Chenglin, ZHANG Jingkun, SHA Wei, SHEN Xiaoshuang. Geochemical characteristics of Permian condensate oil and gas and phase types in southwest of Mahu Sag [J]. Lithologic Reservoirs, 2024, 36(6): 149-159.
[8] YAN Jianping, LAI Siyu, GUO Wei, SHI Xuewen, LIAO Maojie, TANG Hongming, HU Qinhong, HUANG Yi. Research progress on casing deformation types and influencing factors in geological engineering of shale gas wells [J]. Lithologic Reservoirs, 2024, 36(5): 1-14.
[9] YANG Haibo, FENG Dehao, YANG Xiaoyi, GUO Wenjian, HAN Yang, SU Jiajia, YANG Huang, LIU Chenglin. Characteristics of source rocks and thermal evolution simulation of Permian Pingdiquan Formation in Dongdaohaizi Sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(5): 156-166.
[10] WEI Chenglin, ZHANG Fengqi, JIANG Qingchun, LU Xuesong, LIU Gang, WEI Yanzhao, LI Shubo, JIANG Wenlong. Formation mechanism and evolution characteristics of overpressure in deep Permian in eastern Fukang Sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(5): 167-177.
[11] BAO Hanyong, ZHAO Shuai, ZHANG Li, LIU Haotian. Exploration achievements and prospects for shale gas of Middle-Upper Permian in Hongxing area,eastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(4): 12-24.
[12] XU Tianlu, WU Chengmei, ZHANG Jinfeng, CAO Aiqiong, ZHANG Teng. Natural fracture characteristics and fracture network simulation in shale reservoirs of Permian Lucaogou Formation in Jimsar Sag [J]. Lithologic Reservoirs, 2024, 36(4): 35-43.
[13] SHEN Youyi, WANG Kaifeng, TANG Shuheng, ZHANG Songhang, XI Zhaodong, YANG Xiaodong. Geological modeling and“sweet spot”prediction of Permian coal measures shale reservoirs in Yushe-Wuxiang block,Qinshui Basin [J]. Lithologic Reservoirs, 2024, 36(4): 98-108.
[14] TANG Shukai, GUO Tiankui, WANG Haiyang, CHEN Ming. Numerical simulation of fracture propagation law of in-fracture temporary plugging and diverting fracturing in tight reservoirs [J]. Lithologic Reservoirs, 2024, 36(4): 169-177.
[15] SHAO Wei, ZHOU Daorong, LI Jianqing, ZHANG Chengcheng, LIU Tao. Key factors and favorable exploration directions for oil and gas enrichment in back margin sag of thrust nappe in Lower Yangtze [J]. Lithologic Reservoirs, 2024, 36(3): 61-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
TRENDMD: