Lithologic Reservoirs ›› 2018, Vol. 30 ›› Issue (2): 77-84.doi: 10.12108/yxyqc.20180209

Previous Articles     Next Articles

Nanopore structure characteristics of shale based on Ar adsorption

ZHU Hanqing, JIA Ailin, WEI Yunsheng, JIA Chengye, JIN Yiqiu, YUAN He   

  1. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
  • Received:2017-09-01 Revised:2017-10-25 Online:2018-03-21 Published:2018-03-21

Abstract: The microscopic pore structure has direct effect on gas bearing property of shale. Field emission scanning electron microscope (FE-SEM)was applied to describe pore morphology and types qualitatively of Longmaxi shale samples in south Sichuan Basin. Low temperature Ar adsorption experiment was carried out to measure the specific surface area (SSA), pore volume (PV) and pore size distribution (PSD) of the shale samples, and the continuous measurement of nanopore less than 100 nm was achieved. Fractal characteristics of nanopore structure were also studied by use of Frenkel-Halsey-Hill (FHH) model, and the relationships among total organic carbon content, pore structure parameters and fractal dimensions were discussed. The result shows that organic pores, intergranular pores and intragranular pores are developed in Longmaxi shale, and organic pores are dominated. The nanopores are slit shape on the Ar adsorption isotherms, and are mainly distributed in micropores and mesopores less than 10 nm, and the micropore size is mainly 0.6-0.9 nm and 1.8-2.0 nm, while the mesopore size is mainly 4.0-5.0 nm. The fractal dimension of nanopores ranges from 2.55 to 2.64, showing strong heterogeneity. Total organic carbon content controls the development of nanopores in shales. With the increase of TOC content, the number and proportion of micropores increase, and the fractal dimension also increases. All these factors complicate the pore structure of shale samples, and enhance the gas adsorption capacity of shale reservoirs. The research results have important significance for the study of nanopore structure of Longmaxi shale reservoir in southern Sichuan Basin.

CLC Number: 

  • TE122.2
[1] 董大忠, 邹才能, 杨桦, 等.中国页岩气勘探开发进展与发展前景.石油学报, 2012, 33(增刊1):107-114. DONG D Z, ZOU C N, YANG H, et al. Progress and prospects of shale gas exploration and development in China. Acta Petrolei Sinica, 2012, 33(Suppl 1):107-114.
[2] 郭彤楼, 张汉荣.四川盆地焦石坝页岩气田形成与富集高产模式.石油勘探与开发, 2014, 41(1):28-36. GUO T L, ZHANG H R. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin. Petroleum Exploration and Development, 2014, 41(1):28-36.
[3] 贾爱林, 位云生, 金亦秋.中国海相页岩气开发评价关键技术进展.石油勘探与开发, 2016, 43(6):1-7. JIA A L, WEI Y S, JIN Y Q. Progress in key technologies for evaluating marine shale gas development in China. Petroleum Exploration and Development, 2016, 43(6):1-7.
[4] 蒋裕强, 董大忠, 漆麟, 等.页岩气储层的基本特征及其评价. 天然气工业, 2010, 30(10):7-12. JIANG Y Q, DONG D Z, QI L, et al. Basic features and evaluation of shale gas reservoirs. Natural Gas Industry, 2010, 30(10):7-12.
[5] 刘树根, 王世玉, 孙伟, 等.四川盆地及其周缘五峰组-龙马溪组黑色页岩特征.成都理工大学学报(自然科学版), 2013, 40(6):621-638. LIU S G, WANG S Y, SUN W, et al. Characteristics of black shale in Wufeng Formation and Longmaxi Formation in Sichuan Basin and its peripheral areas. Journal of Chengdu University of Technology(Science & Technology Edition), 2013, 40(6):621-638.
[6] MILLIKEN K L, RUDNICKI M, AWWILLER D N, et al. Organic matter-hosted pore system, Marcellus Formation(Devonian),Pennsylvania. AAPG Bulletin, 2013, 97(2):177-200.
[7] CURTIS M E, AMBROSE R J, SONDERGELD C H, et al. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging. AAPG Bulletin, 2012, 96(4):665-677.
[8] 何建华, 丁文龙, 付景龙, 等.页岩微观孔隙成因类型研究.岩性油气藏, 2014, 26(5):30-35. HE J H, DING W L, FU J L, et al. Study on genetic type of micropore in shale reservoir. Lithologic Reservoirs, 2014, 26(5):30-35.
[9] 魏祥峰, 刘若冰, 张廷山, 等.页岩气储层微观孔隙结构特征及发育控制因素:以川南-黔北XX地区龙马溪组为例.天然气地球科学, 2013, 24(5):1048-1059. WEI X F, LIU R B, ZHANG T S, et al. Micro-pores structure characteristics and development control factors of shale gas reservoir:a case of Longmaxi formation in XX area of southern Sichuan and northern Guizhou. Natural Gas Geoscience, 2013, 24(5):1048-1059.
[10] MATTHIAS T, KATSUMI K, ALEXANDER V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution(IUPAC Technical Report). Pure and Applied Chemistry, 2015, 87(9/10):1051-1069.
[11] 顾忠安, 郑荣才, 王亮, 等.渝东涪陵地区大安寨段页岩储层特征研究.岩性油气藏, 2014, 26(2):67-73. GU Z A, ZHENG R C, WANG L, et al. Characteristics of shale reservoir of Da'anzhai segment in Fuling area eastern Chongqing. Lithologic Reservoirs, 2014, 26(2):67-73.
[12] LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 2009, 79:848-861.
[13] 孙文峰, 李玮, 董智煜, 等.页岩孔隙结构表征方法新探索.岩性油气藏, 2017, 29(2):125-130. SUN W F, LI W, DONG Z Y, et al. A new approach to the characterization of shale pore structure. Lithologic Reservoirs, 2017, 29(2):125-130.
[14] CLARKSON C R, SOLANO N, BUSTIN R M, et al. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption,and mercury intrusion. Fuel, 2013, 103, 606-616.
[15] 杨峰, 宁正福, 张世栋, 等.基于氮气吸附实验的页岩孔隙结构表征.天然气工业, 2013, 33(4):135-140. YANG F, NING Z F, ZHANG S D, et al. Characterization of pore structures in shales through nitrogen adsorption experiment. Natural Gas Industry, 2013, 33(4):135-140.
[16] 李贤庆, 王哲, 郭曼, 等.黔北地区下古生界页岩气储层孔隙结构特征.中国矿业大学学报, 2016, 45(6):1172-1183. LI X Q, WANG Z, GUO M, et al. Pore structure characteristics of the Lower Paleozoic formation shale gas reservoir in northern Guizhou. Journal of China University of Mining & Technology, 2016, 45(6):1172-1183.
[17] LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin, 2012, 96(6):1071-1098.
[18] PAUL C, HACKLEY. Geological and geochemical characterization of the Lower Cretaceous Pearsall Formation, Maverick Basin, south Texas:a future shale gas resource. AAPG Bulletin, 2012, 96(8):1449-1482.
[19] 武瑾, 梁峰, 吝文, 等.渝东北地区龙马溪组页岩储层微观孔隙结构特征.成都理工大学学报(自然科学版), 2016, 43(3):308-319. WU J, LIANG F, LIN W, et al. Characteristics of micropore structure of Longmaxi Formation shale gas reservoirs in northeast district of Chongqing, China. Journal of Chengdu University of Technology(Science & Technology Edition), 2016, 43(3):308-319.
[20] 吉利明, 邱军利, 夏燕青, 等.常见黏土矿物电镜扫描微孔特征与甲烷吸附性.石油学报, 2012, 33(2):249-256. JI L M, QIU J L, XIA Y Q, et al. Micro-pore characteristics and methane adsorption properties of common clay minerals by electron microscope scanning. Acta Petrolei Sinica, 2012, 33(2):249-256.
[21] PIETER B, KEVIN S, HELGE S, et al. On the use and abuse of N2 physisorption for the characterization of the pore structure of shales. The Clay Minerals Society Workshop Lectures Series, 2016, 21(12):151-161.
[22] HANSEN J P, SKJELTORP A T. Fractal pore space and rock permeability implications. Physical Review B:Condensed Matter Physics, 1988, 38(4):2635.
[23] YANG F, NING Z F, LIU H Q. Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China. Fuel, 2014, 115:378-384.
[24] 杨峰, 宁正福, 王庆, 等.页岩纳米孔隙分形特征.天然气地球科学, 2014, 25(4):618-623. YANG F, NING Z F, WANG Q, et al. Fractal characteristics of nanopore in shales. Natural Gas Geoscience, 2014, 25(4):618-623.
[25] 徐勇, 吕成福, 陈俊国, 等.川东南龙马溪组页岩孔隙分形特征.岩性油气藏, 2015, 27(4):32-39. XU Y, LYU C F, CHEN J G, et al. Fractal characteristics of shale pores of Longmaxi Formation in southeast Sichuan Basin. Lithologic Reservoirs, 2015, 27(4):32-39.
[26] ROSS D J K, BUSTIN R M. The importance of shale composition and pore structure upon gas storage of shale gas reservoirs. Marine and Petroleum Geology, 2009, 26(6):916-927.
[27] CHALMERS G R L, BUSTIN R M. The organic matter distribution and methane capacity of the Lower Cretaceous strata of northeastern British Columbia. Canada International Journal of Coal Geology, 2007, 70(1):223-239.
[1] YU Qixiang, LUO Yu, DUAN Tiejun, LI Yong, SONG Zaichao, WEI Qingliang. Reservoir forming conditions and exploration prospect of Jurassic coalbed methane encircling Dongdaohaizi sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(6): 45-55.
[2] YIN Lu, LI Bo, QI Wen, SUN Dong, YUE Xingfu, MA Hui. Origins and accumulation characteristics of large-scale generation of natural hydrogen [J]. Lithologic Reservoirs, 2024, 36(6): 1-11.
[3] XIAO Boya. Characteristics and favorable zone distribution of tuff reservoirt of Cretaceous in A’nan sag,Erlian Basin [J]. Lithologic Reservoirs, 2024, 36(6): 135-148.
[4] WANG Zixin, LIU Guangdi, YUAN Guangjie, YANG Henglin, FU Li, WANG Yuan, CHEN Gang, ZHANG Heng. Characteristics and reservoir control of source rocks of Triassic Chang 7 member in Qingcheng area,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(5): 133-144.
[5] WEI Chenglin, ZHANG Fengqi, JIANG Qingchun, LU Xuesong, LIU Gang, WEI Yanzhao, LI Shubo, JIANG Wenlong. Formation mechanism and evolution characteristics of overpressure in deep Permian in eastern Fukang Sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(5): 167-177.
[6] ZHANG Xiaoli, WANG Xiaojuan, ZHANG Hang, CHEN Qin, GUAN Xu, ZHAO Zhengwang, WANG Changyong, TAN Yaojie. Reservoir characteristics and main controlling factors of Jurassic Shaximiao Formation in Wubaochang area,northeastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 87-98.
[7] SHEN Youyi, WANG Kaifeng, TANG Shuheng, ZHANG Songhang, XI Zhaodong, YANG Xiaodong. Geological modeling and“sweet spot”prediction of Permian coal measures shale reservoirs in Yushe-Wuxiang block,Qinshui Basin [J]. Lithologic Reservoirs, 2024, 36(4): 98-108.
[8] WANG Tongchuan, CHEN Haoru, WEN Longbin, QIAN Yugui, LI Yuzhuo, WEN Huaguo. Identification and reservoir significance of Carboniferous karst paleogeomorphology in Wubaiti area,eastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(4): 109-121.
[9] TIAN Ya, LI Junhui, CHEN Fangju, LI Yue, LIU Huaye, ZOU Yue, ZHANG Xiaoyang. Tight reservoir characteristics and favorable areas prediction of Lower Cretaceous Nantun Formation in central fault depression zone of Hailar Basin [J]. Lithologic Reservoirs, 2024, 36(4): 136-146.
[10] ZHU Biao, ZOU Niuniu, ZHANG Daquan, DU Wei, CHEN Yi. Characteristics of shale pore structure and its oil and gas geological significance of Lower Cambrian Niutitang Formation in Fenggang area,northern Guizhou [J]. Lithologic Reservoirs, 2024, 36(4): 147-158.
[11] XIA Maolong, ZHANG Benjian, ZENG Yiyang, JIA Song, ZHAO Chunni, FENG Mingyou, LI Yong, SHANG Junxin. Main controlling factors and distribution of reservoirs of the second member of Sinian Dengying Formation in Penglai gas field,central Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(3): 50-60.
[12] SHAO Wei, ZHOU Daorong, LI Jianqing, ZHANG Chengcheng, LIU Tao. Key factors and favorable exploration directions for oil and gas enrichment in back margin sag of thrust nappe in Lower Yangtze [J]. Lithologic Reservoirs, 2024, 36(3): 61-71.
[13] HE Wenyuan, ZHAO Ying, ZHONG Jianhua, SUN Ningliang. Characteristics and significance of micron pores and micron fractures in shale oil reservoirs of Cretaceous Qingshankou Formation in Gulong sag,Songliao Basin [J]. Lithologic Reservoirs, 2024, 36(3): 1-18.
[14] JI Yubing, GUO Bingru, MEI Jue, YIN Zhijun, ZOU Chen. Fracture modeling of shale reservoirs of Silurian Longmaxi Formation in Luobu syncline in Zhaotong National Shale Gas Demonstration Area, southern margin of Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(3): 137-145.
[15] LEI Tao, MO Songyu, LI Xiaohui, JIANG Nan, ZHU Chaobin, WANG Qiao, QU Xuejiao, WANG Jia. Sandbody superimposition patterns and oil and gas exploration significance of Permian Shanxi Formation in Daniudi gas field,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(2): 147-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Lithologic Reservoirs, 2022, 34(2): 0 .
[2] LI Zaiguang,LI Lin. Automatic mapping based on well data[J]. Lithologic Reservoirs, 2007, 19(2): 84 -89 .
[3] CHENG Yuhong,GUO Yanru,ZHENG Ximing,FANG Naizhen,MA Yuhu. The interpretation method and application effect determined by multiple seismic and logging factors[J]. Lithologic Reservoirs, 2007, 19(2): 97 -101 .
[4] LIU Juntian,JIN Zhenjia,LI Zaiguang,TAN Xinping,GUO Lin,WANG Bo,LIU Yuxiang. Controlling factors for lithologic hydrocarbon reservoirs and petroleum prospecting target in Xiaocaohu area , Taibei Sag[J]. Lithologic Reservoirs, 2007, 19(3): 44 -47 .
[5] SHANG Changliang, FU Shouxian. Application of 3D seismic survey in loess tableland[J]. Lithologic Reservoirs, 2007, 19(3): 106 -110 .
[6] WANG Changyong, ZHENG Rongcai, WANG Jianguo, CAO Shaofang, Xiao Mingguo. Sedimentary characteristics and evolution of Badaowan Formation of Lower Jurassic in northwest margin of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(2): 37 -42 .
[7] WANG Ke1 LIU Xianyang, ZHAO Weiwei, SONG Jianghai, SHI Zhenfeng, XIANG Hui. Char acter istics and geological significance of seismites of Paleogene in Yangxin Subsag of J iyang Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 54 -59 .
[8] SUN Hongbin, ZHANG Fenglian. Structural-sedimentary evolution char acter istics of Paleogene in Liaohe Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 60 -65 .
[9] LI Chuanliang. Can uplift r esult in abnormal high pr essur e in formation?[J]. Lithologic Reservoirs, 2008, 20(2): 124 -126 .
[10] WEI Qinlian,ZHENG Rongcai,XIAO Ling,MA Guofu,DOU Shijie,TIAN Baozhong. Study on horizontal heterogeneity in Serie Inferiere of Triassic in 438b block , Algeria[J]. Lithologic Reservoirs, 2009, 21(2): 24 -28 .
TRENDMD: