Lithologic Reservoirs ›› 2017, Vol. 29 ›› Issue (4): 1-10.doi: 10.3969/j.issn.1673-8926.2017.04.001

    Next Articles

Growth pattern of chlorite film in Chang 8 sandstone of Yanchang Formation in Ordos Basin

ZHOU Xiaofeng1,2, DING Li3,4, YANG Weiguo3,4, SONG Peng3,4, YU Junmin1,2   

  1. 1. College of Petroleum Engineering, China University of Petroleum(Beijing), Beijing 102249, China;
    2. Key Laboratory of Petroleum Engineering, Ministry of Education, China University of Petroleum(Beijing), Beijing 102249, China;
    3. Research Institute of Exploration and Development, PetroChina Changqing Oilfield Company, Xi'an 710018, China;
    4. National Engineering Laboratory for Exploration and Development of Low Permeability Oil and Gas Fields, Xi'an 710018, China
  • Received:2016-10-10 Revised:2016-12-06 Online:2017-07-21 Published:2017-07-21

Abstract: The sandstone property is closely related to the chlorite film of Yanchang Formation in Ordos Basin. The data of cast thin slice and scanning electron microscope with energy disperse spectroscopy were used to analyze the chlorite film of Chang 8 sandstone,so as to study the growth pattern of the chlorite film and its influence on physical properties. The result shows that the chlorite film consists of inner layer film and outer layer film, and the outer layer film can be separated into small crystal sub-layer film and big crystal sub-layer film according to the grain size of crystal chlorite. The small crystal sub-layer film developed in the early diagenetic stage B, and the crystal has small size, poor shape and dense arrangement after rapid crystallization,and the chlorite film had the capacity to retard fluid exchange between the primary pore and the small cavity formed by the dissolution of the framework grain. The inner layer film developed in the small cavity and had low Fe and Mg content with high Si content under the bidirectional block of the small crystal sub-layer film, whose crystal is small in size and poor in shape and disorderly packed because of too narrow space for the growth. As the connectivity of the primary pore changed for the worse and the oil emplaced in the middle diagenetic stage, the velocity of the fluid decreased and the supply of the substance slowed down, which reduced the growth rate of chlorite. In such a process, some crystal chlorites increased in size and sparsely arranged and formed the big crystal sub-layer above the small crystal sub-layer film. The small crystal sub-layer film on the surface of quartziferous clastic particle inhibited quartz overgrowth by occupying the crystalline substrate. The small crystal sub-layer film on the surface of feldspathic clastic particle retarded the dissolution of the feldspathic clastic particle, and the inner layer film in the surface of the framework grain consumed the silicic fluid,which both led to insufficient silicic fluid to generate large amounts of authigenic quartz particles in the primary pore. The chlorite film protected the primary pore from quartz cement.

Key words: overdisplacing, fracture conductivity, productivity simulation, horizontal gas wells, hydraulic fracture, fracturing operation

CLC Number: 

  • TE122.2+3
[1] DOWEY P J, HODGSON D M, WORDEN R H. Prerequisites, processes, and prediction of chlorite grain coatings in petroleum reservoirs:a review of subsurface examples. Marine and Petroleum Geology, 2012, 32(1):63-75.
[2] MORAES M A S, DE ROS L F. Infiltrated clays in fluvial Jurassic sandstones of Reconcavo Basin,northeastern Brazil. Journal of Sedimentary Petrology, 1990, 60(6):809-819.
[3] MATLACK K S, HOUSEKNECHT D W, APPLIN K R. Emplacement of clay into sand by infiltration. Journal of Sedimentary Petrology, 1989, 59(1):77-87.
[4] JAHREN J S. Evidence of Ostwald ripening related recrystallization of diagenetic chlorites from reservoir rocks offshore Norway. Clay Minerals, 1991, 26(2):169-178.
[5] EHRENBERG S N. Preservation of anomalously high porosity in deeply buried sandstones by grain-coating chlorite:examples from the Norwegian Continental Shelf. AAPG Bulletin, 1993, 77(7):1260-1286.
[6] THOMSON A. Preservation of porosity in the deep Woodbine/Tuscaloosa trend, Louisiana. Transactions of the Gulf Coast Association of Geological Societies, 1979, 30(2):396-403.
[7] 柳益群, 李文厚.陕甘宁盆地东部上三叠统含油长石砂岩的成岩特点及孔隙演化.沉积学报, 1996, 14(3):87-96. LIU Y Q, LI W H. Diagenetic characteristics and porosity evolution of the oil-bearing arkoses in the Upper Triassic in the eastern Shaan-Gan-Ning Basin. Acta Sedimentologica Sinica, 1996, 14(3):87-96.
[8] 黄思静, 谢连文, 张萌, 等.中国三叠系陆相砂岩中自生绿泥石的形成机制及其与储层孔隙保存的关系.成都理工大学学报(自然科学版), 2004, 31(3):273-281. HUANG S J, XIE L W, ZHANG M, et al. Formation mechanism of authigenic chlorite and its relation to preservation of porosity in nonmarine Triassic reservoir sandstones, Ordos Basin and Sichuan Basin, China. Journal of Chengdu University of Technology(Science & Technology Edition), 2004, 31(3):273-281.
[9] 李弘, 王芙蓉, 戴世立, 等. 绿泥石膜对储层孔隙度的影响——以鄂尔多斯盆地M油田延长组2段为例.岩性油气藏, 2008, 20(4):71-74. LI H, WANG F R, DAI S L, et al. Influence of chlorite film on reservoir porosity:a case study from the second member of Yanchang Formation in Ordos Basin. Lithologic Reservoirs, 2008, 20(4):71-74.
[10] 张霞, 林春明, 陈召佑.鄂尔多斯盆地镇泾区块上三叠统延长组砂岩中绿泥石矿物特征. 地质学报, 2011, 85(10):1659-1671. ZHANG X, LIN C M, CHEN Z Y. Characteristics of chlorite minerals from Upper Triassic Yanchang Formation in the Zhenjing area, Ordos Basin. Acta Geologica Sinica, 2011, 85(10):1659-1671.
[11] 张金亮, 司学强, 梁杰, 等.陕甘宁盆地庆阳地区长8油层砂岩成岩作用及其对储层性质的影响. 沉积学报, 2004, 22(2):225-233. ZHANG J L, SI X Q, LIANG J, et al. Diagenesis of lacustrine deltaic sandstones and its impact on reservoir quality. Acta Sedimentologica Sinica, 2004, 22(2):225-233.
[12] 田建锋, 刘池洋, 王桂成, 等.鄂尔多斯盆地三叠系延长组砂岩的碱性溶蚀作用.地球科学——中国地质大学学报, 2011, 36(1):103-110. TIAN J F, LIU C Y, WANG G C, et al. Alkaline dissolution of sandstone in the Triassic Yanchang Formation in the Ordos Basin. Earth Science-Journal of China University of Geosciences, 2011, 36(1):103-110.
[13] 史基安, 王金鹏, 毛明陆, 等.鄂尔多斯盆地西峰油田三叠系延长组长6-8段储层砂岩成岩作用研究.沉积学报, 2003, 21(3):373-379. SHI J A, WANG J P, MAO M L, et al. Reservoir sandstone diagenesis of member 6 to 8 in Yanchang Formation(Triassic), Xifeng Oilfield, Ordos Basin. Acta Sedimentologica Sinica, 2003, 21(3):373-379.
[14] 杨巍, 陈国俊, 张铭杰, 等.鄂尔多斯盆地镇北地区长8油层组自生绿泥石对储层物性的影响.岩性油气藏, 2012, 24(3):27-32. YANG W, CHEN G J, ZHANG M J, et al. Influence of authigenic chlorite on reservoir properties of Chang 8 oil reservoir set in Zhenbei area,Ordos Basin. Lithologic Reservoirs, 2012, 24(3):27-32.
[15] 姚泾利, 王琪, 张瑞, 等.鄂尔多斯盆地华庆地区延长组长6砂岩绿泥石膜的形成机理及其环境指示意义.沉积学报, 2011, 29(1):72-79. YAO J L, WANG Q, ZHANG R, et al. Forming mechanism and their environmental implications of chlorite-coatings in Chang 6 sandstone(Upper Triassic)of Hua-Qing area, Ordos Basin. Acta Sedimentologica Sinica, 2011, 29(1):72-79.
[16] 向芳, 冯钦, 张得彦, 等.绿泥石环边的再研究——来自镇泾地区延长组砂岩的证据.成都理工大学学报(自然科学版), 2016, 43(1):59-67. XIANG F, FENG Q, ZHANG D Y, et al. Further study of chlorite rim in sandstone:evidences from Yanchang Formation in Zhenjing area, Ordos Basin, China. Journal of Chengdu University of Technology(Science and Technology Edition), 2016, 43(1):59-67.
[17] 田建锋, 陈振林, 杨友运.自生绿泥石对砂岩储层孔隙的保护机理.地质科技情报, 2008, 27(4):49-54. TIAN J F, CHEN Z L, YANG Y Y. Protection mechanism of authigenic chlorite on sandstone reservoir pores. Geological Science and Technology Information, 2008, 27(4):49-54.
[18] 段毅, 吴保祥, 张辉, 等. 鄂尔多斯盆地西峰油田原油地球化学特征及其成因. 地质学报, 2006, 80(2):301-310. DUAN Y, WU B X, ZHANG H, et al. Geochemistry and genesis of crude oils of the Xifeng oilfield in the Ordos Basin. Acta Geologica Sinica, 2006, 80(2):301-310.
[19] 侯林慧, 彭平安, 于赤灵, 等. 鄂尔多斯盆地姬塬-西峰地区原油地球化学特征及油源分析. 地球化学, 2007, 36(5):497-506. HOU L H, PENG P A, YU C L, et al. Geochemical characteristics and oil-source analysis of crude oils in Jiyuan-Xifeng Oilfield, Ordos Basin. Geochimica, 2007, 36(5):497-506.
[20] 钟大康, 周立建, 孙海涛, 等.鄂尔多斯盆地陇东地区延长组砂岩储层岩石学特征.地学前缘, 2013, 20(2):52-60. ZHONG D K, ZHOU L J, SUN H T, et al. Petrology of sandstone reservoirs in Longdong area, Ordos Basin. Earth Frontiers, 2013, 20(2):52-60.
[21] 何自新, 贺静.鄂尔多斯盆地中生界储层图册.北京:石油工业出版社, 2004:8-52. HE Z X, HE J. Atlas of Mesozoic reservoirs in Ordos Basin. Beijing:Petroleum Industry Press, 2004:8-52.
[22] 张文正, 杨华, 李剑锋, 等.论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用——强生排烃特征及机理分析.石油勘探与开发, 2006, 33(3):289-293. ZHANG W Z, YANG H, LI J F, et al. Leading effect of high class source rock of Chang 7 in Ordos Basin on enrichment of low permeability oil-gas accumulation:hydrocarbon generation and expulsion mechanism. Petroleum Exploration and Development, 2006, 33(3):289-293.
[23] 杨华, 刘显阳, 张才利, 等.鄂尔多斯盆地三叠系延长组低渗透岩性油藏主控因素及其分布规律. 岩性油气藏, 2007, 19(3):1-6. YANG H, LIU X Y, ZHANG C L, et al. The main controlling factors and distribution of low permeability lithologic reservoirs of Triassic Yanchang Formation in Ordos Basin. Lithologic Reservoirs, 2007, 19(3):1-6.
[24] 郭彦如, 刘俊榜, 杨华, 等.鄂尔多斯盆地延长组低渗透致密岩性油藏成藏机理.石油勘探与开发, 2012, 39(4):417-425. GUO Y R, LIU J B, YANG H, et al. Hydrocarbon accumulation mechanism of low permeable tight lithologic oil reservoir in the Yanchang Formation, Ordos Basin, China. Petroleum Exploration and Development, 2012, 39(4):417-425.
[25] 陈修, 曲希玉, 邱隆伟, 等.石英溶解特征及机理的水热实验研究.矿物岩石地球化学通报, 2015, 34(5):1027-1033. CHEN X, QU X Y, QIU L W, et al. Hydrothermal experiment research on characteristics and mechanisms of quartz dissolution. Bulletin of Mineralogy,Petrology and Geochemistry, 2015, 34(5):1027-1033.
[26] 李汶国, 张晓鹏, 钟玉梅.长石砂岩次生溶孔的形成机理.石油与天然气地质, 2005, 26(2):220-223. LI W G, ZHANG X P, ZHONG Y M. Formation mechanism of secondary dissolved pores in arcose. Oil and Gas Geology, 2005, 26(2):220-223.
[27] MORAD S. Mica alteration reactions in Jurassic reservoir sandstones from the Haltenbanken area,offshore Norway. Clays and Clay Minerals, 1990, 38(6):584-590.
[28] 葛云锦, 陈勇, 周瑶琪.不同成岩条件下油气充注对碳酸盐岩成岩作用的影响.中国石油大学学报(自然科学版), 2009, 33(1):18-22. GE Y J, CHEN Y, ZHOU Y Q. Effects of hydrocarbon emplacement to diagenesis of carbonatite in different conditions:evidences from synthetic oil(hydrocarbon)-bearing inclusions. Journal of China University of Petroleum(Edition of Natural Science), 2009, 33(1):18-22.
[29] 李茹, 葛云锦, 陈勇, 等.储层石英生长影响因素的实验证据. 中国石油大学学报(自然科学版), 2010, 34(2):13-18. LI R, GE Y J, CHEN Y, et al. Experimental evidence of influential factor of quartz growth in reservoir. Journal of China University of Petroleum(Edition of Natural Science), 2010, 34(2):13-18.
[30] PETTIJOHN F J, POTTER P E, SEIVER R. Sand and sandstone. New York, Heidelberg, Berlin:Springer-Verlag, 1973:383-437.
[1] ZHONG Huiying, YU Chengzhi, SHEN Wenxia, BI Yongbin, YI Ran, NI Haoming. Characteristics of fracture interference between horizontal wells in tight reservoirs considering threshold pressure gradient [J]. Lithologic Reservoirs, 2024, 36(3): 172-179.
[2] QIN Jianhua, WANG Jianguo, LI Siyuan, LI Sheng, DOU Zhi, PENG Simi. Characteristics and formation mechanism of hydraulic fractures in tight conglomerate reservoirs of Triassic Baikouquan Formation in Mahu Sag [J]. Lithologic Reservoirs, 2023, 35(4): 29-36.
[3] CUI Yongzheng, JIANG Ruizhong, GAO Yihua, QIAO Xin, WANG Qiong. Pressure transient analysis of hydraulic fractured vertical wells with variable conductivity for CO2 flooding [J]. Lithologic Reservoirs, 2020, 32(4): 172-180.
[4] LI Xiang, WANG Jiangong, ZHANG Ping, LI Lin, HUANG Chenggang, WU Kunyu, ZHANG Qinghui, LONG Wei. Fracture genesis mechanism and geological significance of E32 in Yingxi area, Qaidam Basin [J]. Lithologic Reservoirs, 2018, 30(6): 45-54.
[5] ZHANG Hong, MENG Xuangang, SHAO Changjin, DAI Xiaoxu, YU Hao, LI Xiangfang. Forming mechanism and monitoring of horizontal hydraulic fracture: a case from Qilicun oilfield [J]. Lithologic Reservoirs, 2018, 30(5): 138-145.
[6] YAN Xiangyang, WANG Tengfei, HE Shuangxi, SHEN Beibei, XU Yonghui, CHEN Lin. Productivity simulation for fracturing horizontal gas wells considering overdisplacing operation [J]. Lithologic Reservoirs, 2017, 29(1): 140-146.
[7] YAN Xiangyang,HU Yongquan,LINan,SHEN Beibei. Calculation model of breakdown pressure in shale formation [J]. Lithologic Reservoirs, 2015, 27(2): 109-113.
[8] XIONG Jian,ZENG Shan,WANG Shaoping. A productivity model of vertically fractured well with varying conductivity for low permeability reservoirs [J]. Lithologic Reservoirs, 2013, 25(6): 122-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Sijing,HUANG Peipei,WANG Qingdong,LIU Haonian,WU Meng,ZOU Mingliang. The significance of cementation in porosity preservation in deep-buried sandstones[J]. Lithologic Reservoirs, 2007, 19(3): 7 -13 .
[2] LIU Zhen,CHEN Yanpeng,ZHAO Yang,HAO Qi,XU Xiaoming,CHANG Mai. Distribution and controlling factors of hydrocarbon reservoirs in continental fault basins[J]. Lithologic Reservoirs, 2007, 19(2): 121 -127 .
[3] DING Chao,GUO Lan,YAN Jifu. Forming conditions of Chang 6 reservoir in Anding area of Zichang Oilfield[J]. Lithologic Reservoirs, 2009, 21(1): 46 -50 .
[4] LI Yanshan,ZHANG Zhansong,ZHANG Chaomo,CHEN Peng. Application of mercury injection data to Chang 6 reservoir classification in Changqing area[J]. Lithologic Reservoirs, 2009, 21(2): 91 -93 .
[5] LUO Peng,LI Guorong,SHI Zejin,ZHOU Dazhi,TANG Hongwei,ZHANG Deming. Analysis of sequence stratigraphy and sedimentary facies of M aokou Formation in southeastern Sichuan[J]. Lithologic Reservoirs, 2010, 22(2): 74 -78 .
[6] ZUO Guoping, TU Xiaolong, XIA Jiufeng. Study on volcanic reservoir types in Subei exploration area[J]. Lithologic Reservoirs, 2012, 24(2): 37 -41 .
[7] WANG Feiyu. Method to improve producing degree of thermal recovery horizontal wells and its application[J]. Lithologic Reservoirs, 2010, 22(Z1): 100 -103 .
[8] YUAN Yunfeng,CAI Ye,FAN Zuochun,JIANG Yiyang,QIN Qirong, JIANG Qingping. Fracture characteristics of Carboniferous volcanic reservoirs in Hongche fault belt of Junggar Basin[J]. Lithologic Reservoirs, 2011, 23(1): 47 -51 .
[9] YUAN Jianying, FU Suotang, CAO Zhenglin, YAN Cunfeng,ZHANG Shuichang, MA Dade. Multi-source hydrocarbon generation and accumulation of plateau multiple petroleum system in Qaidam Basin[J]. Lithologic Reservoirs, 2011, 23(3): 7 -14 .
[10] SHI Zhanzhan, HE Zhenhua, WEN Xiaotao, TANG Xiangrong. Reservoir detection based on EMD and GHT[J]. Lithologic Reservoirs, 2011, 23(3): 102 -105 .
TRENDMD: