Lithologic Reservoirs ›› 2020, Vol. 32 ›› Issue (4): 172-180.doi: 10.12108/yxyqc.20200418

• PETROLEUM ENGINEERING • Previous Articles    

Pressure transient analysis of hydraulic fractured vertical wells with variable conductivity for CO2 flooding

CUI Yongzheng1, JIANG Ruizhong1, GAO Yihua2, QIAO Xin3, WANG Qiong1   

  1. 1. College of Petroleum Engineering, China University of Petroleum(East China), Qingdao 266580, Shandong, China;
    2. CNOOC Research Institute Co., Ltd., Beijing 100028, China;
    3. PetroChina Oil & Gas Pipeline Control Center, Beijing 100007, China
  • Received:2019-05-20 Revised:2019-09-04 Online:2020-08-01 Published:2020-06-16

Abstract: At present,CO2 flooding with hydraulic fractured vertical wells has become one of the main technologies for the development of low permeability reservoirs. Hydraulic fracture conductivity is a key factor influencing the production performance of fractured wells,and now most well test models were based on the assumption of a constant fracture width,failing to simulate the space variable width of hydraulic fractures. Based on three-zone composite theory,a CO2 flooding well test model of hydraulic fractured vertical wells considering with variable conductivity was established, and the Laplace transformation was adopted to solve this model, and then the numerical inversion was carried out to draw typical well test curve. According to the pressure response characteristics, the pressure transient type curve was divided into nine stages including wellbore storage stage,skin effect stage, bilinear flow stage,linear flow stage,the first radial flow stage,the first transition stage,the second radial flow stage,the second transition stage and the late radial flow. Sensitivity analysis was carried out to investigate the influence of several factors on pressure transient. The results show that the larger the fracture conductivity was,the smaller the pressure of the bilinear flow stage was,and the easier CO2 can be injected. When the space variable conductivity was considered,the pressure of early flow stages increased,and the pressure and pressure derivative curve of early flow stages rised which was similar to the effect of a larger skin factor. The radius of region-1 and region-2 mainly had an influence on the starting time of transition stage and the duration of radial flow. When the radius of region-1 and region-2 was larger,the start time of the transfer stage was prolonged. When M12 was enhanced,the pressure of the flow in both region-2 and region-3 was larger. When M23 was enhanced,the pressure of the flow in region-3 elevated.

Key words: hydraulic fractured vertical wells, space variable conductivity, CO2 flooding, pressure transient analysis

CLC Number: 

  • TE348
[1] 胡文瑞, 魏漪, 鲍敬伟. 中国低渗透油气藏开发理论与技术进展. 石油勘探与开发, 2018, 45(4):646-656. HU W R, WEI Y, BAO J W. Development of the theory and technology for low permeability reservoirs in China. Petroleum Exploration and Development, 2018, 45(4):646-656.
[2] 袁士义, 王强. 中国油田开发主体技术新进展与展望. 石油勘探与开发, 2018, 45(4):657-668. YUAN S Y, WANG Q. New progress and prospect of oilfields development technologies in China. Petroleum Exploration and Development, 2018, 45(4):657-668.
[3] 唐梅荣, 张同伍, 白晓虎, 等. 孔喉结构对CO2驱储层伤害程度的影响. 岩性油气藏, 2019, 31(3):113-119. TANG M R, ZHANG T W, BAI X H, et al. Influence of pore throat structure on reservoir damage with CO2 flooding. Lithologic Reservoirs, 2019, 31(3):113-119.
[4] 杨红, 王宏, 南宇峰, 等. 油藏CO2驱油提高采收率适宜性评价. 岩性油气藏, 2017, 29(3):140-146. YANG H, WANG H, NAN Y F, et al. Suitability evaluation of enhanced oil recovery by CO2 flooding. Lithologic Reservoirs, 2017, 29(3):140-146.
[5] TANG R W, AMBASTHA A K. Analysis of CO2 pressure transient data with two-and three-region analytical radial composite models. SPE 18275, 1988.
[6] SU K, LIAO X, ZHAO X. Transient pressure analysis and interpretation for analytical composite model of CO2 flooding. Journal of Petroleum Science and Engineering, 2015, 125:128-135.
[7] 阎燕, 李友全, 于伟杰, 等.低渗透油藏CO2驱采油井试井模型. 断块油气田, 2018, 25(1):80-84. YAN Y, LI Y Q, YU W J, et al. Well test model research for CO2 flooding production well in low permeability reservoirs. Fault-Block Oil & Gas Field, 2018, 25(1):80-84.
[8] 李友全, 韩秀虹, 阎燕, 等. 低渗透油藏CO2吞吐压力响应曲线分析. 岩性油气藏, 2017, 29(6):122-130. LI Y Q, HAN X H, YAN Y, et al. Pressure transient analysis on CO2 huff and puff in low permeability reservoir. Lithologic Reservoirs, 2017, 29(6):122-130.
[9] 苏玉亮, 孟凡坤, 周诗雨, 等.低渗透油藏CO2驱试井曲线特征分析. 科技导报, 2015, 33(18):34-39. SU Y L, MENG F K, ZHOU S Y, et al. Characteristics analysis of well testing curve of CO2 flooding in low permeability reservoir. Science & Technology Review, 2015, 33(18):34-39.
[10] LI L, VOSKOV D V, YAO J, et al. Multiphase transient analysis for monitoring of CO2 flooding. Journal of Petroleum Science and Engineering, 2018, 160:537-554.
[11] LI L, YAO J, LI Y, et al. Pressure-transient analysis of CO2 flooding based on a compositional method. Journal of Natural Gas Science and Engineering, 2016, 33:30-36.
[12] 姜瑞忠, 张海涛, 张伟, 等. CO2驱三区复合油藏水平井压力动态分析. 油气地质与采收率, 2018(6):63-70. JIANG R Z, ZHANG H T, ZHANG W, et al. Dynamic pressure analysis of three-zone composite horizontal well in oil reservoirs for CO2 flooding. Petroleum Geology and Recovery Efficiency, 2018(6):63-70.
[13] TENG W C, QIAO X, TENG L, et al. Production performance analysis of multiple fractured horizontal wells with finite-conductivity fractures in shale gas reservoirs. Journal of Natural Gas Science and Engineering, 2016, 36:747-759.
[14] GUO J, WANG H, ZHANG L. Transient pressure and production dynamics of multi-stage fractured horizontal wells in shale gas reservoirs with stimulated reservoir volume. Journal of Natural Gas Science & Engineering, 2016, 35:425-443.
[15] 姬靖皓, 席家辉, 曾凤凰, 等. 致密油藏分段多簇压裂水平井非稳态产能模型. 岩性油气藏, 2019, 31(4):157-164. JI J H, XI J H, ZENG F H, et al. Unsteady productivity model of segmented multi -cluster fractured horizontal wells in tight oil reservoir. Lithologic Reservoirs, 2019, 31(4):157-164.
[16] JIA P, CHENG L S, HUANG S J, et al. Pressure-transient analysis of a finite-conductivity inclined fracture connected to a slanted wellbore. SPE Journal, 2016, 21(2):522-537.
[17] 郭建春, 路千里, 曾凡辉. 楔形裂缝压裂井产量预测模型. 石油学报, 2013, 34(2):346-352. GUO J C, LU Q L, ZENG F H. A productivity prediction model for a fractured well with wedge-shaped fractures. Acta Petrolei Sinica, 2013, 34(2):346-352.
[18] 孙贺东, 欧阳伟平, 张冕, 等.考虑裂缝变导流能力的致密气井现代产量递减分析. 石油勘探与开发, 2018, 45(3):98-106. SUN H D, OUYANG W P, ZHANG M, et al. Advanced production decline analysis of tight gas wells with variable fracture conductivity. Petroleum Exploration and Development, 2018, 45(3):98-106.
[19] 高阳, 赵超, 董平川, 等. 致密气藏变导流能力裂缝压裂水平井不稳定渗流模型. 大庆石油地质与开发, 2015, 34(6):141-147. GAO Y, ZHAO C, DONG P C, et al. Transient flow model of the fractured horizontal well with rariable conductivity fractures in tight gas reservoirs. Petroleum Geology and Oilfield Development in Daqing, 2015, 34(6):141-147.
[20] LUO W J, TANG C F. A semianalytical solution of a vertical fractured well with varying conductivity under non-Darcy-flow condition. SPE Journal, 2015, 20(5):1028-1040.
[21] HUANG Y, CHENG S Q, YU H Y, et al. A semianalytical approach to estimate fracture closure and formation damage of vertically fractured wells in tight gas reservoir. Journal of Petroleum Science and Engineering, 2017, 150:85-90.
[22] LIU Q L, TIAN S C, YU W, et al. A semi-analytical model for simulation of fluid flow in tight rock with irregular fracture geometry. Journal of Petroleum Science and Engineering, 2019, 174:14-24.
[23] LIU J, LIU P C, LI S M, et al. A mathematical model and semianalytical solution for transient pressure of vertical fracture with varying conductivity in three crossflow rectangular layers. Energy Exploration and Exploitation, 2019, 37(1):230-250.
[1] GUO Yongwei, YAN Fangping, WANG Jing, CHU Huili, YANG Jianlei, CHEN Yingchao, ZHANG Xiaoyang. Characteristics of solid deposition and reservoir damage of CO2 flooding in tight sandstone reservoirs [J]. Lithologic Reservoirs, 2021, 33(3): 153-161.
[2] SUN Huizhu, ZHU Yushuang, WEI Yong, GAO Yuan. Influence mechanism of acidification on oil recovery during CO2 flooding [J]. Lithologic Reservoirs, 2020, 32(4): 136-142.
[3] SHI Wenyang, YAO Yuedong, CHENG Shiqing, GU Shaohua, SHI Zhiliang. Pressure transient analysis for separate-layer acid fracturing well of tidal flat fractured carbonate reservoirs in western Sichuan Basin [J]. Lithologic Reservoirs, 2020, 32(1): 152-160.
[4] TANG Meirong, ZHANG Tongwu, BAI Xiaohu, WANG Xuanyi, LI Chuan. Influence of pore throat structure on reservoir damage with CO2 flooding [J]. Lithologic Reservoirs, 2019, 31(3): 113-119.
[5] SHANG Qinghua, WANG Yuxia, HUANG Chunxia, CHEN Longlong. Supercritical and non-supercritical CO2 flooding characteristics in tight sandstone reservoir [J]. Lithologic Reservoirs, 2018, 30(3): 153-158.
[6] MA Li, OUYANG Chuanxiang, TAN Zhengyang, WANG Changquan, SONG Yan, LIN Fei. Efficiency improvement of CO2 flooding in middle and later stage for low permeability reservoirs [J]. Lithologic Reservoirs, 2018, 30(2): 139-145.
[7] YANG Hong, WANG Hong, NAN Yufeng, QU Yaning, LIANG Kaiqiang, JIANG Shaojing. Suitability evaluation of enhanced oil recovery by CO2 flooding [J]. Lithologic Reservoirs, 2017, 29(3): 140-146.
[8] Li Youquan,Meng Fankun,Yan Yan,Han Fengrui,Yu Weijie,Zhou Shiyu. Pressure transient analysis on CO2 flooding in low permeability reservoirs considering fluid heterogeneity [J]. Lithologic Reservoirs, 2016, 28(4): 106-112.
[9] Guo Ping,Xu Qinghua,Sun Zhen,Du Jianfen,Wang Zhouhua. Research progress of CO2 flooding and geological storage in gas reservoirs [J]. Lithologic Reservoirs, 2016, 28(3): 6-11.
[10] LI Hu, PU Chunsheng, WU Feipeng. Prediction of minimum miscibility pressure in CO2 flooding based on general regression neural network [J]. Lithologic Reservoirs, 2012, 24(1): 108-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Sijing,HUANG Peipei,WANG Qingdong,LIU Haonian,WU Meng,ZOU Mingliang. The significance of cementation in porosity preservation in deep-buried sandstones[J]. Lithologic Reservoirs, 2007, 19(3): 7 -13 .
[2] LIU Zhen,CHEN Yanpeng,ZHAO Yang,HAO Qi,XU Xiaoming,CHANG Mai. Distribution and controlling factors of hydrocarbon reservoirs in continental fault basins[J]. Lithologic Reservoirs, 2007, 19(2): 121 -127 .
[3] DING Chao,GUO Lan,YAN Jifu. Forming conditions of Chang 6 reservoir in Anding area of Zichang Oilfield[J]. Lithologic Reservoirs, 2009, 21(1): 46 -50 .
[4] LI Yanshan,ZHANG Zhansong,ZHANG Chaomo,CHEN Peng. Application of mercury injection data to Chang 6 reservoir classification in Changqing area[J]. Lithologic Reservoirs, 2009, 21(2): 91 -93 .
[5] LUO Peng,LI Guorong,SHI Zejin,ZHOU Dazhi,TANG Hongwei,ZHANG Deming. Analysis of sequence stratigraphy and sedimentary facies of M aokou Formation in southeastern Sichuan[J]. Lithologic Reservoirs, 2010, 22(2): 74 -78 .
[6] ZUO Guoping, TU Xiaolong, XIA Jiufeng. Study on volcanic reservoir types in Subei exploration area[J]. Lithologic Reservoirs, 2012, 24(2): 37 -41 .
[7] WANG Feiyu. Method to improve producing degree of thermal recovery horizontal wells and its application[J]. Lithologic Reservoirs, 2010, 22(Z1): 100 -103 .
[8] YUAN Yunfeng,CAI Ye,FAN Zuochun,JIANG Yiyang,QIN Qirong, JIANG Qingping. Fracture characteristics of Carboniferous volcanic reservoirs in Hongche fault belt of Junggar Basin[J]. Lithologic Reservoirs, 2011, 23(1): 47 -51 .
[9] YUAN Jianying, FU Suotang, CAO Zhenglin, YAN Cunfeng,ZHANG Shuichang, MA Dade. Multi-source hydrocarbon generation and accumulation of plateau multiple petroleum system in Qaidam Basin[J]. Lithologic Reservoirs, 2011, 23(3): 7 -14 .
[10] SHI Zhanzhan, HE Zhenhua, WEN Xiaotao, TANG Xiangrong. Reservoir detection based on EMD and GHT[J]. Lithologic Reservoirs, 2011, 23(3): 102 -105 .
TRENDMD: