Lithologic Reservoirs ›› 2019, Vol. 31 ›› Issue (3): 113-119.doi: 10.12108/yxyqc.20190313

• OIL AND GAS FIELD DEVELOPMENT • Previous Articles     Next Articles

Influence of pore throat structure on reservoir damage with CO2 flooding

TANG Meirong1,2, ZHANG Tongwu1,2, BAI Xiaohu1,2, WANG Xuanyi1,2, LI Chuan1,2   

  1. 1. Research Institute of Oil and Gas Technology, PetroChina Changqing Oilfield Company, Xi'an 710018, China;
    2. National Engineering Laboratory for Exploration and Development of Low-Permeability Oil & Gas Fields, Xi'an 710018, China
  • Received:2018-12-21 Revised:2019-03-10 Online:2019-05-21 Published:2019-05-06

Abstract: In the process of enhancing oil recovery by CO2 flooding, the interaction of CO2 with crude oil and matrix minerals will damage the pore throat structure of reservoir. In order to reveal the influence of pore throat structure on reservoir damage during CO2 flooding, nuclear magnetic resonance (NMR) combined with high pressure mercury injection and scanning electron microscopy was used to determine the plugging degree of pore throat in core samples through laboratory physical simulation experiments, and the damage degree of core samples with different pore throat structures during CO2 flooding was evaluated, to clarify the reservoir damage mechanism. The experimental results show that asphaltene deposition and acidification produced during CO2 flooding have little effect on reservoir porosity, and the porosity of core samples decreased by about 1%. While the damage to permeability is greater, and the permeability of core with type Ⅲ pore structure decreased by 20.55%. The lower the permeability and the worse the pore throat structure, the greater the damage to permeability. The plugging degree of pore throat is positively correlated with pore throat structure parameters. The worse the pore throat structure is, the lower the median radius is, the easier the pore throat plugging will occur. The rate of pore throat plugging in type I pore structure cores is low, and the degree of pore throat plugging in type Ⅲ pore structure cores is obviously increased, up to 34.32%. The results can provide a basis for efficient application of CO2 flooding in the field.

Key words: nuclear magnetic resonance, pore throat structure, CO2 flooding, reservoir damage, influencing mechanism

CLC Number: 

  • TE357.7
[1] 高云丛, 赵密福, 王建波, 等.特低渗油藏CO2 非混相驱生产特征与气窜规律.石油勘探与开发, 2014, 41(1):79-85. GAO Y C, ZHAO M F, WANG J B, et al. Performance and gas breakthrough during CO2 immiscible flooding in ultra-low permeability reservoirs. Petroleum Exploration and Development, 2014, 41(1):79-85.
[2] 程杰成, 刘春林, 汪艳勇, 等.特低渗透油藏二氧化碳近混相驱试验研究.特种油气藏, 2016, 23(6):64-67. CHENG J C, LIU C L, WANG Y Y, et al. Near-miscible CO2 flooding test in ultra-low permeability oil reservoir. Special Oil & Gas Reservoirs, 2016, 23(6):64-67.
[3] 郝永卯, 薄启炜, 陈月明.CO2 驱油实验研究.石油勘探与开发, 2005, 32(2):110-112. HAO Y M, BO Q W, CHEN Y M. Laboratory investigation of CO2 flooding. Petroleum Exploration and Development, 2005,32(2):110-112.
[4] 马力, 欧阳传湘, 谭钲扬, 等.低渗透油藏CO2 驱中后期提效方法研究.岩性油气藏, 2018, 30(2):139-145. MA L, OUYANG C X, TAN Z Y, et al. Efficiency improvement of CO2 flooding in middle and later stage for low permeability reservoirs. Lithologic Reservoirs, 2018, 30(2):139-145.
[5] 尚庆华, 王玉霞, 黄春霞, 等.致密砂岩油藏超临界与非超临界CO2驱油特征.岩性油气藏, 2018, 30(3):153-158. SHANG Q H, WANG Y X, HUANG C X, et al. Supercritical and non-supercritical CO2 flooding characteristics in tight sandstone reservoir. Lithologic Reservoirs, 2018, 30(3):153-158.
[6] 杨红, 王宏, 南宇峰, 等.油藏CO2 驱油提高采收率适宜性评价.岩性油气藏, 2017, 29(3):140-146. YANG H, WANG H, NAN Y F, et al. Suitability evaluation of enhanced oil recovery by CO2 flooding. Lithologic Reservoirs, 2017, 29(3):140-146.
[7] 王琛, 李天太, 高辉, 等.CO2 驱沥青质沉积量对致密砂岩油藏采收率的影响机理.油气地质与采收率, 2018, 25(3):107-111. WANG C, LI T T, GAO H, et al. Study on influence mechanisms of asphaltene precipitation on oil recovery during CO2 flooding in tight sandstone reservoirs. Petroleum Geology and Recovery Efficiency, 2018, 25(3):107-111.
[8] 高志彬. 注CO2 过程中沥青沉淀对储层伤害的定量评价研究. 北京:中国地质大学(北京), 2014. GAO Z B. Quantitative evaluation of formation damage due to asphaltene deposition when CO2 flooding. Beijing:China University of Geosciences(Beijing), 2014.
[9] 孙忠新.CO2 驱油效果影响因素研究. 大庆:大庆石油学院, 2009. SUN Z X. Study on influencing factors of CO2 flooding. Daqing:Daqing Petroleum Institute, 2009.
[10] 王琛, 李天太, 高辉, 等.CO2驱沥青质沉积对岩心的微观伤害机理.新疆石油地质, 2017, 38(5):602-606. WANG C, LI T T, GAO H, et al. Microscopic damage mechanism of asphaltene deposition on cores during CO2 flooding. Xinjiang Petroleum Geology, 2017, 38(5):602-606.
[11] 王琛, 李天太, 高辉, 等.CO2-地层水-岩石相互作用对特低渗透砂岩孔喉伤害程度定量评价.西安石油大学学报(自然科学版), 2017, 32(6):66-72. WANG C, LI T T, GAO H, et al. Quantitative study on the damage degree of CO2-formation water-rock interaction on pore and throat of ultra-low permeability sandstone. Journal of Xi'an Shiyou University(Natural Science Edition), 2017, 32(6):66-72.
[12] BEHBAHANI T J, GHOTBI C, TAGHIKHANI V. Investigation on asphaltene deposition mechanisms during CO2 flooding processes in porous media:a novel experimental study and a modified model based on multilayer theory for asphaltene adsorption. Energy Fuels, 2012, 26(8):5080-5091.
[13] 王琛, 李天太, 赵金省, 等.利用核磁共振技术研究沥青质沉积对低渗储层孔隙结构的影响. 地球物理学进展, 2018, 33(4):1700-1706. WANG C, LI T T, ZHAO J S, et al. Study on effect of asphaltene precipitation on the pore structure of low permeability reservoir by nuclear magnetic resonance. Progress in Geophysics (in Chinese), 2018, 33(4):1700-1706.
[14] YU Z C, LIU L, YANG S Y, et al. An experimental study of CO2-brine-rock interaction at in situ pressure-temperature reservoir conditions. Chemical Geology, 2012, 326:88-101.
[15] 于志超, 杨思玉, 刘立, 等.饱和CO2 地层水驱过程中的水-岩相互作用实验.石油学报,2012, 33(6):1032-1042. YU Z C, YANG S Y, LIU L, et al. An experimental study on water-rock interaction during water flooding in formation saturated with CO2. Acta Petrolei Sinica, 2012, 33(6):1032-1042.
[1] LI Qihui, REN Dazhong, NING Bo, SUN Zhen, LI Tian, WAN Cixuan, YANG Fu, ZHANG Shiming. Micro-pore structure characteristics of coal seams of Jurassic Yan’an Formation in Shenmu area,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(2): 76-88.
[2] YAO Xiutian, WANG Chao, YAN Sen, WANG Mingpeng, LI Wan. Reservoir sensitivity of Neogene Guantao Formation in Zhanhua Sag, Bohai Bay Basin [J]. Lithologic Reservoirs, 2023, 35(2): 159-168.
[3] XIA Qingsong, LU Jiang, YANG Peng, ZHANG Kun, YANG Chaoyi, NIE Junjie, ZHU Yunfang, LI Lifang. Microscopic pore structure characteristics of the upper member of Oligocene Xiaganchaigou Formation in Yingxi area, Qaidam Basin [J]. Lithologic Reservoirs, 2023, 35(1): 132-144.
[4] XIANG Xuebing, SIMA Liqiang, WANG Liang, LI Jun, GUO Yuhao, ZHANG Hao. Pore fluid division and effective pore size calculation of shale gas reservoir: A case study of Longtan Formation in Sichuan Basin [J]. Lithologic Reservoirs, 2021, 33(4): 137-146.
[5] GUO Yongwei, YAN Fangping, WANG Jing, CHU Huili, YANG Jianlei, CHEN Yingchao, ZHANG Xiaoyang. Characteristics of solid deposition and reservoir damage of CO2 flooding in tight sandstone reservoirs [J]. Lithologic Reservoirs, 2021, 33(3): 153-161.
[6] ZHANG Xiaohui, ZHANG Juan, YUAN Jingsu, CUI Xiaoli, MAO Zhenhua. Micro pore throat structure and its influence on seepage of Chang 81 tight reservoir in Nanliang-Huachi area,Ordos Basin [J]. Lithologic Reservoirs, 2021, 33(2): 36-48.
[7] NING Congqian, ZHOU Mingshun, CHENG Jie, SU Rui, HAO Peng, WANG Min, PAN Jingli. Application of 2D NMR logging in fluid identification of glutenite reservoir [J]. Lithologic Reservoirs, 2021, 33(1): 267-274.
[8] SUN Huizhu, ZHU Yushuang, WEI Yong, GAO Yuan. Influence mechanism of acidification on oil recovery during CO2 flooding [J]. Lithologic Reservoirs, 2020, 32(4): 136-142.
[9] CUI Yongzheng, JIANG Ruizhong, GAO Yihua, QIAO Xin, WANG Qiong. Pressure transient analysis of hydraulic fractured vertical wells with variable conductivity for CO2 flooding [J]. Lithologic Reservoirs, 2020, 32(4): 172-180.
[10] YANG Fu, HE Dan, MA Dongmin, DUAN Zhonghui, TIAN Tao, FU Deliang. Multi-scale joint characterization of micro-pore structure of low-rank coal reservoir [J]. Lithologic Reservoirs, 2020, 32(3): 14-23.
[11] CHENG Hui, WANG Fuyong, ZAI Yun, ZHOU Shuxun. Prediction of tight sandstone permeability based on high-pressure mercury intrusion(HPMI)and nuclear magnetic resonance(NMR) [J]. Lithologic Reservoirs, 2020, 32(3): 122-132.
[12] XUE Dan, ZHANG Sui'an, WU Xinmin, LI Xuhang, DU Junjun, LU Chengang. Sensitivity experiment of shale gas reservoir of Chang 7 reservoir in Xiasiwan oilfield [J]. Lithologic Reservoirs, 2019, 31(3): 135-144.
[13] SHANG Qinghua, WANG Yuxia, HUANG Chunxia, CHEN Longlong. Supercritical and non-supercritical CO2 flooding characteristics in tight sandstone reservoir [J]. Lithologic Reservoirs, 2018, 30(3): 153-158.
[14] LIAO Mingguang, GUO Yunfei, YAO Jingli, LIAO Jijia, NAN Junxiang. Pore throat structure characteristics of Chang 31 reservoir in HuachiHeshui area, Ordos Basin [J]. Lithologic Reservoirs, 2018, 30(3): 17-26.
[15] MA Li, OUYANG Chuanxiang, TAN Zhengyang, WANG Changquan, SONG Yan, LIN Fei. Efficiency improvement of CO2 flooding in middle and later stage for low permeability reservoirs [J]. Lithologic Reservoirs, 2018, 30(2): 139-145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Qinlian, ZHENG Rongcai, XIAO Ling,WANG Chengyu, NIU Xiaobing. Influencing factors and characteristics of Chang 6 reservoir in Wuqi area, Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(4): 45 -50 .
[2] WANG Dongqi, YIN Daiyin. Empirical formulas of relative permeability curve of water drive reservoirs[J]. Lithologic Reservoirs, 2017, 29(3): 159 -164 .
[3] LI Yun, SHI Zhiqiang. Study on fluid inclusion of tight sandstone reservoir of Upper Triassic Xujiahe Formation in central Sichuan Basin[J]. Lithologic Reservoirs, 2008, 20(1): 27 -32 .
[4] JIANG Ren, FAN Tailiang, XU Shouli. Concept and techniques of seismic geomorphology[J]. Lithologic Reservoirs, 2008, 20(1): 33 -38 .
[5] ZOU Mingliang, HUANG Sijing, HU Zuowei, FENG Wenli, LIU Haoniannian. The origin of carbonate cements and the influence on reservoir quality of Pinghu Formation in Xihu Sag, East China Sea[J]. Lithologic Reservoirs, 2008, 20(1): 47 -52 .
[6] WANG Bingjie, HE Sheng, NI June, FANG Du. Activity analysis of main faults in Qianquan area, Banqiao Sag[J]. Lithologic Reservoirs, 2008, 20(1): 75 -82 .
[7] CHEN Zhenbiao, ZHANG Chaomo, ZHANG Zhansong, LING Husong, SUN Baodian. Using NMR T2 spectrum distribution to study fractal nature of pore structure[J]. Lithologic Reservoirs, 2008, 20(1): 105 -110 .
[8] ZHANG Houfu, XU Zhaohui. Discussion on stratigraphic-lithologic reservoirs exploration in the aspect of the research history of reservoirs[J]. Lithologic Reservoirs, 2008, 20(1): 114 -123 .
[9] ZHANG Xia. Cultivation of exploration creativity[J]. Lithologic Reservoirs, 2007, 19(1): 16 -20 .
[10] YANG Wuyang, YANG Wencai, LIU Quanxin, WANG Xiwen. 3D frequency and space domain amplitude-preserved migration with viscoelastic wave equations[J]. Lithologic Reservoirs, 2007, 19(1): 86 -91 .
TRENDMD: