Lithologic Reservoirs ›› 2020, Vol. 32 ›› Issue (4): 136-142.doi: 10.12108/yxyqc.20200414

• OIL AND GAS FIELD DEVELOPMENT • Previous Articles     Next Articles

Influence mechanism of acidification on oil recovery during CO2 flooding

SUN Huizhu1,2,3, ZHU Yushuang1,2, WEI Yong4, GAO Yuan3,5   

  1. 1. State Key Laboratory of Continental Dynamics, Northwest University, Xi'an 710069, China;
    2. Department of Geology, Northwest University, Xi'an 710069, China;
    3. School of Petroleum Engineering, Xi'an Shiyou University, Xi'an 710065, China;
    4. Fengcheng Oilfield Operation Area, PetroChina Xinjiang Oilfield Company, Karamay 834014, Xinjiang, China;
    5. Shaanxi Gas Group Co., Ltd., Xi'an 710016, China
  • Received:2019-12-28 Revised:2020-02-27 Online:2020-08-01 Published:2020-06-16

Abstract: The acidification of CO2 can cause damage to the reservoir to a certain extent. In order to reveal the influence mechanism of acidification on oil recovery,six core samples with the same level of permeability were selected for CO2 flooding tests under the conditions of reservoir temperature and pressure,and then the influence mechanism of acidification on oil recovery was evaluated by NMR technique. The results show that the pH value of the displaced fluids is lower than that of the original formation water,and the change of the ion concentration before and after CO2 flooding reflects the dissolution of feldspar and carbonate minerals. The permeability of the core samples decreased after CO2 flooding,and the longer the reaction time,the greater the decrease of permeability. The ultimate recovery factor of the core sample is inversely proportional to the reaction time. The core sample with a reaction time of 240 h was reduced by 27.31% compared to the core sample of 0 h. Comprehensive analysis shows that the long-term acidification and corrosion reaction products of CO2 flooding and the exfoliated clay particles will block the pore throat,resulting in the decline of reservoir seepage capacity, which in turn affects the displacement efficiency and ultimate recovery factor of CO2 flooding.

Key words: CO2 flooding, acidification, nuclear magnetic resonance, influence mechanism, oil recovery

CLC Number: 

  • TE357
[1] 秦积舜, 韩海水, 刘晓蕾.美国CO2驱油技术应用及启示.石油勘探与开发, 2015, 42(2):209-216. QIN J S, HAN H S, LIU X L. Application and enlightenment of carbon dioxide flooding in the United States of America. Petroleum Exploration and Development, 2015, 42(2):209-216.
[2] 王玉普, 刘义坤, 邓庆军.中国陆相砂岩油田特高含水期开发现状及对策.东北石油大学学报, 2014, 38(1):1-9. WANG Y P, LIU Y K, DENG Q J. Current situation and development strategy of the extra high water cut stage of continental facies sandstone oil fields in China. Journal of Northeast Petroleum University, 2014, 38(1):1-9.
[3] 张德平.CO2驱采油技术研究与应用现状.科技导报, 2011, 29(13):75-79. ZHANG D P. CO2 flooding enhanced oil recovery technique and its application status. Science & Technology Review, 2011, 29(13):75-79.
[4] 杨红, 王宏, 南宇峰, 等.油藏CO2驱油提高采收率适宜性评. 岩性油气藏, 2017, 29(3):140-146. YANG H, WANG H, NAN Y F, et al. Suitability evaluation of enhanced oil recovery by CO2 flooding. Lithologic Reservoirs, 2017, 29(3):140-146.
[5] 王琛, 李天太, 高辉, 等.CO2驱沥青质沉积量对致密砂岩油藏采收率的影响机理.油气地质与采收率, 2018, 25(3):107-111. WANG C, LI T T, GAO H, et al. Study on influencing mechanism of asphaltene precipitation on oil recovery during CO2 flooding in tight sandstone reservoirs. Petroleum Geology and Recovery Efficiency, 2018, 25(3):107-111.
[6] 祝春生, 程林松.低渗透油藏CO2驱提高原油采收率评价研究.钻采工艺, 2007, 30(6):55-57. ZHU C S, CHENG L S. Evaluation of CO2 flooding in low permeability reservoirs to improve crude oil recovery. Drilling & Production Technology, 2007, 30(6):55-57.
[7] 王琛, 李天太, 高辉, 等.CO2驱沥青质沉积对岩心的微观伤害机理.新疆石油地质, 2017, 38(5):602-606. WANG C, LI T T, GAO H, et.al. Microscopic damage mechanism of asphaltene deposition on cores during CO2 flooding. Xinjiang Petroleum Geology, 2017, 38(5):602-606.
[8] 李士伦, 周守信, 杜建芬, 等.国内外注气提高石油采收率技术回顾与展望.油气地质与采收率, 2002, 9(2):1-5. LI S L, ZHOU S X, DU J F, et al. Petroleum geology and recovery efficiency. Petroleum Geology and Recovery Efficiency, 2002, 9(2):1-5.
[9] 郭冀隆.二氧化碳地质封存过程中CO2-水-岩相互作用实验研究.北京:中国地质大学(北京),2017. GUO J L. Experimental studies on CO2-water-rockinteractions under geological CO2 storage conditions. Beijing:China University of Geosciences(Beijing), 2017.
[10] 王晓宇.埋藏条件下CO2-地层水-砂岩相互作用实验及其地质应用.南京:南京大学, 2017. WANG X Y. A experimental study of CO2-formation water-sandstone interactions under burial conditions and its geological applications. Nanjing:Nanjing University, 2017.
[11] 尚庆华, 王玉霞, 黄春霞, 等.致密砂岩油藏超临界与非超临界CO2驱油特征.岩性油气藏, 2018, 30(3):153-158. SHANG Q H, WANG Y X, HUANG C X, et al. Supercritical and non-supercritical CO2 flooding characteristics in tight sandstone reservoir. Lithologic Reservoirs, 2018, 30(3):153-158.
[12] 马力, 欧阳传湘, 谭钲扬, 等.低渗透油藏CO2驱中后期提效方法研究.岩性油气藏, 2018, 30(2):139-145. MA L, OUYANG C X, TAN Z Y, et al. Efficiency improvement of CO2 flooding in middle and later stage for low permeability reservoirs. Lithologic Reservoirs, 2018, 30(2):139-145.
[13] 周冰.CO2流体对泥岩盖层的改造作用——水岩相互作用实验研究//中国地质学会.中国地质学会2015学术年会论文摘要汇编(中册).西安:中国地质学会, 2015. ZHOU B. Reconstruction of mudstone caprock by CO2 fluid:Experimental study on water-rock interaction//Geological Society of China. Abstracts of the 2015 Annual Meeting of Geological Society of China. Xi'an:Geological Society of China, 2015.
[14] 王琛, 李天太, 赵金省, 等.利用核磁共振技术研究沥青质沉积对低渗储层孔隙结构的影响. 地球物理学进展, 2018, 33(4):1700-1706. WANG C, LI T T, ZHAO J S, et al. Study on effect of asphaltene precipitation on the pore structure of low permeability reservoir by nuclear magnetic resonance(NMR). Progress in Geophysics, 2018, 33(4):1700-1706.
[15] 李紫晶, 郭冀隆, 张阳阳, 等.砂岩高温超临界CO2水岩模拟实验及其地质意义.天然气工业, 2015, 35(5):31-38. LI Z J, GUO J L, ZHANG Y Y, et al. High-temperature supercritical CO2 water-rock simulation experiment of sandstone and its geological significance. Natural Gas Industry, 2015, 35(5):31-38.
[16] ROSS G D, TODD A C, TWEEDIE J A, et al. The dissolution effects of CO2-brine systems on the permeability of UK and North Sea calcareous sandstones. SPE 10685, 1982.
[17] RYOJI S, THOMAS L. Experimental study on water-rock interactions during CO2 flooding in the Tensleep Formation, Wyoming, USA. Applied Geochemistry, 2000, 15(3):265-279.
[18] YU Z, LIU L, YANG S, et al. An experimental study of CO2-brine-rock interaction at in situ pressure-temperature reservoir conditions. Chemical Geology, 2012, 326:88-101.
[19] 于志超.饱和CO2地层水驱过程中的水-岩相互作用研究.吉林:吉林大学, 2013. YU Z C. An experimental study on water-rock interaction during water flooding in formations saturated with CO2. Jilin:Jilin University, 2013.
[20] 于志超, 杨思玉, 刘立, 等.饱和CO2地层水驱过程中的水-岩相互作用实验. 石油学报, 2012, 33(6):1032-1042. YU Z C, YANG S Y, LIU L, et al. An experimental study on water-rock interaction during water flooding in formations saturated with CO2. Acta Petrolei Sinica, 2012, 33(6):1032-1042.
[21] 于淼, 刘立, 杨思玉, 等.CO2-盐水-砂岩相互作用实验研究.矿物学报, 2015, 35(增刊1):803. YU M, LIU L, YANG S Y, et al. Experimental study on CO2-Brine-Sandstone interaction. Acta Mineralogica Sinica, 2015, 35(Suppl 1):803.
[22] 于淼.CO2驱油后的流体-岩石相互作用实验//中国矿物岩石地球化学学会.中国矿物岩石地球化学学会第15届学术年会论文摘要集(5).长春:中国矿物岩石地球化学学会, 2015. YU M. Fluid-rock interaction experiment after CO2 flooding//Chinese Society for Mineralogy,Petrology and Geochemistry. Abstract Collection of Papers of the 15th Annual Conference of Chinese Society for Mineralogy, Petrology and Geochemistry. Changchun:Chinese Society for Mineralogy, Petrology and Geochemistry, 2015.
[23] 王琛, 李天太, 高辉, 等.CO2-地层水-岩石相互作用对特低渗透砂岩孔喉伤害程度定量评价.西安石油大学学报(自然科学版), 2017, 32(6):66-72. WANG C, LI T T, GAO H, et al. Quantitative study on the damage degree of CO2-formation water-rock interaction on pore and throat of ultra-low permeability sandstone. Journal of Xi'an Shiyou University(Natural Science Edition), 2017, 32(6):66-72.
[24] 唐梅荣, 张同伍, 白晓虎, 等.孔喉结构对CO2驱储层伤害程度的影响.岩性油气藏, 2019, 31(3):113-119. TANG M R, ZHANG T W, BAI X H, et al. Influence of pore throat structure on reservoir damage with CO2 flooding. Lithologic Reservoirs, 2019, 31(3):113-119.
[1] SU Hao, GUO Yandong, CAO Liying, YU Chen, CUI Shuyue, LU Ting, ZHANG Yun, LI Junchao. Natural depletion characteristics and pressure maintenance strategies of faultcontrolled fracture-cavity condensate gas reservoirs in Shunbei Oilfield [J]. Lithologic Reservoirs, 2024, 36(5): 178-188.
[2] LI Qihui, REN Dazhong, NING Bo, SUN Zhen, LI Tian, WAN Cixuan, YANG Fu, ZHANG Shiming. Micro-pore structure characteristics of coal seams of Jurassic Yan’an Formation in Shenmu area,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(2): 76-88.
[3] BAI Jiajia, SI Shuanghu, TAO Lei, WANG Guoqing, WANG Longlong, SHI Wenyang, ZHANG Na, ZHU Qingjie. Mechanism of DES+CTAB composite oil displacement agent system to improve oil recovery of low-permeability tight sandstone reservoirs [J]. Lithologic Reservoirs, 2024, 36(1): 169-177.
[4] YANG Zhaochen, LU Yingbo, YANG Guo, HUANG Chun, YI Dalin, JIA Song, WU Yongbin, WANG Guiqing. Pre-CO2 energy storage fracturing technology in horizontal wells for medium-deep heavy oil [J]. Lithologic Reservoirs, 2024, 36(1): 178-184.
[5] XIA Qingsong, LU Jiang, YANG Peng, ZHANG Kun, YANG Chaoyi, NIE Junjie, ZHU Yunfang, LI Lifang. Microscopic pore structure characteristics of the upper member of Oligocene Xiaganchaigou Formation in Yingxi area, Qaidam Basin [J]. Lithologic Reservoirs, 2023, 35(1): 132-144.
[6] XIANG Xuebing, SIMA Liqiang, WANG Liang, LI Jun, GUO Yuhao, ZHANG Hao. Pore fluid division and effective pore size calculation of shale gas reservoir: A case study of Longtan Formation in Sichuan Basin [J]. Lithologic Reservoirs, 2021, 33(4): 137-146.
[7] GUO Yongwei, YAN Fangping, WANG Jing, CHU Huili, YANG Jianlei, CHEN Yingchao, ZHANG Xiaoyang. Characteristics of solid deposition and reservoir damage of CO2 flooding in tight sandstone reservoirs [J]. Lithologic Reservoirs, 2021, 33(3): 153-161.
[8] ZHANG Xiaohui, ZHANG Juan, YUAN Jingsu, CUI Xiaoli, MAO Zhenhua. Micro pore throat structure and its influence on seepage of Chang 81 tight reservoir in Nanliang-Huachi area,Ordos Basin [J]. Lithologic Reservoirs, 2021, 33(2): 36-48.
[9] NING Congqian, ZHOU Mingshun, CHENG Jie, SU Rui, HAO Peng, WANG Min, PAN Jingli. Application of 2D NMR logging in fluid identification of glutenite reservoir [J]. Lithologic Reservoirs, 2021, 33(1): 267-274.
[10] CUI Yongzheng, JIANG Ruizhong, GAO Yihua, QIAO Xin, WANG Qiong. Pressure transient analysis of hydraulic fractured vertical wells with variable conductivity for CO2 flooding [J]. Lithologic Reservoirs, 2020, 32(4): 172-180.
[11] YANG Fu, HE Dan, MA Dongmin, DUAN Zhonghui, TIAN Tao, FU Deliang. Multi-scale joint characterization of micro-pore structure of low-rank coal reservoir [J]. Lithologic Reservoirs, 2020, 32(3): 14-23.
[12] CHENG Hui, WANG Fuyong, ZAI Yun, ZHOU Shuxun. Prediction of tight sandstone permeability based on high-pressure mercury intrusion(HPMI)and nuclear magnetic resonance(NMR) [J]. Lithologic Reservoirs, 2020, 32(3): 122-132.
[13] HUANG Guangqing. Influence of ion composition and salinity on recovery of water flooding with low salinity [J]. Lithologic Reservoirs, 2019, 31(5): 129-133.
[14] TANG Meirong, ZHANG Tongwu, BAI Xiaohu, WANG Xuanyi, LI Chuan. Influence of pore throat structure on reservoir damage with CO2 flooding [J]. Lithologic Reservoirs, 2019, 31(3): 113-119.
[15] HAN Peihui, YAN Kun, CAO Ruibo, GAO Shuling, TONG Hui. Oil displacement methods for enhanced oil recovery after polymer flooding [J]. Lithologic Reservoirs, 2019, 31(2): 143-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DUAN Tianxiang,LIU Xiaomei,ZHANG Yajun,XIAO Shuqin. Discussion on geologic modeling with Petrel[J]. Lithologic Reservoirs, 2007, 19(2): 102 -107 .
[2] ZHANG Liqiu. Optimization of upward strata combination of second class oil layer in eastern south Ⅱ area of Daqing Oilfield[J]. Lithologic Reservoirs, 2007, 19(4): 116 -120 .
[3] ZHANG Di,HOU Zhongjian,WANG Yahui,WANG Ying,WANG Chunlian. Sedimentary characteristics of lacustrine carbonate rocks of the first member of Shahejie Formation in Banqiao-Beidagang area[J]. Lithologic Reservoirs, 2008, 20(4): 92 -97 .
[4] FAN Huaicai, LI Xiaoping, DOU Tiancai, WU Xinyuan. Study on stress sensitivity effect on flow dynamic features of gas wells[J]. Lithologic Reservoirs, 2010, 22(4): 130 -134 .
[5] TIAN Shufang,ZHANG Hongwen. Application of life cycle theory to predict increasing trend of proved oil reserves in Liaohe Oilfield[J]. Lithologic Reservoirs, 2010, 22(1): 98 -100 .
[6] YANG Kai,GUO Xiao. Numerical simulation study of three-dimensional two-phase black oil model in fractured low permeability reservoirs[J]. Lithologic Reservoirs, 2009, 21(3): 118 -121 .
[7] ZHAI Zhongxi, QINWeijun, GUO Jinrui. Quantitative relations between oil-gas filling degree and channel seepage flow capacity of the reservoir:Example of Shuanghe Oilfield in Biyang Depression[J]. Lithologic Reservoirs, 2009, 21(4): 92 -95 .
[8] QI Minghui,LU Zhengyuan,YUAN Shuai,LI Xinhua. The analysis on the sources of water body and characteristic of water breakthough at Block 12 in Tahe Oilfield[J]. Lithologic Reservoirs, 2009, 21(4): 115 -119 .
[9] LI Xiangbo,CHEN Qi,lin,LIU Huaqing,WAN Yanrong,MU Jingkui,LIAO Jianbo,WEI Lihua. Three types of sediment gravity flows and their petroliferous features of Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2010, 22(3): 16 -21 .
[10] LIU Yun,LU Yuan,YI Xiangyi, ZHANG Junliang, ZHANG Jinliang,WANG Zhenxi. Gas hydrate forecasting model and its influencing factors[J]. Lithologic Reservoirs, 2010, 22(3): 124 -127 .
TRENDMD: