Lithologic Reservoirs ›› 2017, Vol. 29 ›› Issue (6): 1-7.doi: 10.3969/j.issn.1673-8926.2017.06.001
GUO Qiulin1, WU Na1, REN Hongjia1, CHEN Ningsheng1, CHEN Zhuoheng2
CLC Number:
[1] 周文, 徐浩, 余谦, 等.四川盆地及其周缘五峰组-龙马溪组与筇竹寺组页岩含气性差异及成因.岩性油气藏, 2016, 28(5):18-25. ZHOU W, XU H, YU Q, et al. Shale gas-bearing property differences and their genesis between Wufeng-Longmaxi Formation and Qiongzhusi Formation in Sichuan Basin and surrounding areas. Lithologic Reservoirs, 2016, 28(5):18-25. [2] 张小龙, 张同伟, 李艳芳, 等.页岩气勘探和开发进展综述.岩性油气藏, 2013, 25(2):116-122. ZHANG X L, ZHANG T W, LI Y F, et al. Research advance in exploration and development of shale gas. Lithologic Reservoirs, 2013, 25(2):116-122. [3] JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems:the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment.AAPG Bulletin, 2007, 91(4):475-499. [4] CHALMERS G, BUSTIN R, POWER I M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses:examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bulletin, 2012, 96(6):1099-1119. [5] CURTIS M E, CARDOTT B J, SONDERGELD C H, et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity. International Journal of Coal Geology, 2012, 103:26-31. [6] POMMER M, MILLIKEN K. Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas. AAPG Bulletin, 2015, 99(9):1713-1744. [7] 崔景伟, 朱如凯, 崔京钢.页岩孔隙演化及其与残留烃量的关系:来自地质过程约束下模拟实验的证据.地质学报, 2013, 87(5):730-736. CUI J W, ZHU R K, CUI J G. Relationship of porous evolution and residual hydrocarbon:evidence from modeling experiment with geological constrains. Acta Geologica Sinica, 2013, 87(5):730-736. [8] MODICA C J, LAPIERRE S G. Estimation of kerogen porosity in source rocks as a function of thermal transformation:example from the Mowry Shale in the Powder River Basin of Wyoming. AAPG Bulletin, 2012, 96(1):87-108. [9] 郭秋麟, 陈晓明, 宋焕琪, 等.泥页岩埋藏过程孔隙度演化与预测模型探讨.天然气地球科学, 2013, 24(3):439-449. GUO Q L, CHEN X M, SONG H Q, et al. Evolution and models of shale porosity during burial process. Natural Gas Geoscience, 2013, 24(3):439-449. [10] 吴松涛, 朱如凯, 崔京钢, 等.鄂尔多斯盆地长7湖相泥页岩孔隙演化特征.石油勘探与开发, 2015, 42(2):167-176. WU S T, ZHU R K, CUI J G, et al. Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 member, Ordos Basin, NW China. Petroleum Exploration and Development, 2015, 42(2):167-176. [11] CHEN Z, JIANG C. A revised method for organic porosity estimation in shale reservoirs using Rock-Eval data:example from Duvernay Formation in the Western Canada Sedimentary Basin. AAPG Bulletin, 2016, 100(3):405-422. [12] 王志伟, 卢双舫, 王民, 等.湖相、海相泥页岩孔隙分形特征对比.岩性油气藏, 2016, 28(1):88-93. WANG Z W, LU S F, WANG M, et al. Fractal characteristic of lacustrine shale and marine shale. Lithologic Reservoirs, 2016, 28(1):88-93. [13] 乌立言.生油岩热解快速定量评价.北京:科学出版社, 1986. WU L Y. Quick evaluation quantitatively on the pyrogenation of source rocks. Beijing:Science Press, 1986. [14] 郭秋麟, 米石云, 石广仁, 等.盆地模拟方法原理.北京:石油工业出版社, 1998. GUO Q L, MI S Y, SHI G R, et al. Principle method of basin modeling. Beijing:Petroleum Industry Press, 1998. [15] ORR W L. Comments on pyrolytic hydrocarbon yields in source rock evaluation//Bjøroy M. Advances in petroleum geochemistry. Chichester:Wiley & Sons Ltd., 1981:775-787. [16] MILLIKEN K L, RUDNICKI M, AWWILLER D N, et al. Organic matter-hosted pore system, Marcellus ormation(Devonian), Pennsylvania. AAPG Bulletin, 2013, 97(2):177-200. [17] MASTALERZ M, SCHIMMELMANN A, DROBNIAK A, et al. Porosity of devonian and Mississippian New Albany Shale across a maturation gradient:insights from organic petrology, gas adsorption, and mercury intrusion. AAPG Bulletin, 2013, 97(10):1621-1643. [18] 王飞宇, 关晶, 冯伟平, 等.过成熟海相页岩孔隙度演化特征和游离气量.石油勘探与开发, 2013, 40(6):764-768. WANG F Y, GUAN J, FENG W P, et al. Evolution of overmature marine shale porosity and implication to the free gas volume. Petroleum Exploration and Development, 2013, 40(6):764-768. |
[1] | XIAO Boya. Characteristics and favorable zone distribution of tuff reservoirt of Cretaceous in A’nan sag,Erlian Basin [J]. Lithologic Reservoirs, 2024, 36(6): 135-148. |
[2] | SU Hao, GUO Yandong, CAO Liying, YU Chen, CUI Shuyue, LU Ting, ZHANG Yun, LI Junchao. Natural depletion characteristics and pressure maintenance strategies of faultcontrolled fracture-cavity condensate gas reservoirs in Shunbei Oilfield [J]. Lithologic Reservoirs, 2024, 36(5): 178-188. |
[3] | ZHANG Wenbo, LI Ya, YANG Tian, PENG Siqiao, CAI Laixing, REN Qiqiang. Characteristics and diagenetic evolution of Permian pyroclastic reservoirs in Jianyang area,Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(2): 136-146. |
[4] | BAI Jiajia, SI Shuanghu, TAO Lei, WANG Guoqing, WANG Longlong, SHI Wenyang, ZHANG Na, ZHU Qingjie. Mechanism of DES+CTAB composite oil displacement agent system to improve oil recovery of low-permeability tight sandstone reservoirs [J]. Lithologic Reservoirs, 2024, 36(1): 169-177. |
[5] | DAI Bo, WANG Leifei, ZHUANG Jian, YUAN Weibin, WANG Xuesheng. Experiment of minimum miscible pressure of CO2 flooding in ultra-low permeability reservoir [J]. Lithologic Reservoirs, 2020, 32(2): 129-133. |
[6] | ZHANG Yichao, CHEN Minfeng, QU Dan, MAO Meifen, YANG Ziyou. Prediction method of well pattern infilling effect for ultra-low permeability reservoir in X oilfield [J]. Lithologic Reservoirs, 2020, 32(1): 144-151. |
[7] | LI Wei, LIU Ping, AI Nengping, SHAO Yuan, HOU Jingxian. Development characteristics and genetic mechanism of mid-deep reservoirs in Ledong area,Yinggehai Basin [J]. Lithologic Reservoirs, 2020, 32(1): 19-26. |
[8] | HUANG Guangqing. Influence of ion composition and salinity on recovery of water flooding with low salinity [J]. Lithologic Reservoirs, 2019, 31(5): 129-133. |
[9] | CHEN Xianglin, GUO Tianxu, SHI Dishi, HOU Qidong, WANG Chao. Pore structure characteristics and adsorption capacity of Niutitang Formation shale in southern Shaanxi [J]. Lithologic Reservoirs, 2019, 31(5): 52-60. |
[10] | YANG Tao, ZENG Lianbo, NIE Haikuan, FENG Dongjun, BAO Hanyong, WANG Ruyue. Adsorption capacity and controlling factors of marine-continental transitional shale in Xiangzhong Depression [J]. Lithologic Reservoirs, 2019, 31(2): 105-114. |
[11] | HAN Peihui, YAN Kun, CAO Ruibo, GAO Shuling, TONG Hui. Oil displacement methods for enhanced oil recovery after polymer flooding [J]. Lithologic Reservoirs, 2019, 31(2): 143-150. |
[12] | JIANG Ruizhong, SHEN Zeyang, CUI Yongzheng, ZHANG Fulei, ZHANG Chunguang, YUAN Jianwei. Dynamical characteristics of inclined well in dual medium low permeability reservoir [J]. Lithologic Reservoirs, 2018, 30(6): 131-137. |
[13] | JIANG Tingxue, WANG Haitao, BIAN Xiaobing, LI Hongchun, LIU Jiankun, WU Chunfang, ZHOU Linbo. Volume fracturing technology for horizontal well and its application [J]. Lithologic Reservoirs, 2018, 30(3): 1-11. |
[14] | LIAO Mingguang, GUO Yunfei, YAO Jingli, LIAO Jijia, NAN Junxiang. Pore throat structure characteristics of Chang 31 reservoir in HuachiHeshui area, Ordos Basin [J]. Lithologic Reservoirs, 2018, 30(3): 17-26. |
[15] | YIN Daiyin, XIANG Junhui, WANG Dongqi. Classification of Fuyang oil reservoir with ultra-low permeability around placanticline of Daqing Oilfield [J]. Lithologic Reservoirs, 2018, 30(1): 150-154. |
|