Lithologic Reservoirs ›› 2026, Vol. 38 ›› Issue (1): 38-54.doi: 10.12108/yxyqc.20260104

• PETROLEUM EXPLORATION • Previous Articles     Next Articles

Progress in high-frequency sequence stratigraphy of clastic lakes: Implications from ancient sedimentary sequences

ZAVALA Carlos1, LIU Huaqing2,3, LI Xiangbo2,3(), YANG Zhanlong2,3, LI Yang1,4,5, WANG Jing2,3, TROBBIANI Valentin6,7, ARCURI Mariano6,7   

  1. 1 College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
    2 PetroChina Research Institute of Petroleum Exploration and Development-Northwest, Lanzhou 730020, China
    3 Key Laboratory of Petroleum Reservoir Description, CNPC, Lanzhou 730020, China
    4 Institute of Energy, Peking University, Beijing 100871, China
    5 Inner Mongolia Key Laboratory of Deep Coalbed Methane Accumulation Mechanism and Efficient Development, Ordos 017010, Inner Mongolia, China
    6 Departamento de Geología, Universidad Nacional del Sur (UNS), Bahia Blanca 8000, Argentina
    7 GCS Consulting Services, Bahia Blanca 8000, Argentina
  • Received:2025-08-11 Revised:2025-09-11 Online:2026-01-01 Published:2026-01-23
  • Contact: LI Xiangbo E-mail:lixiangbo911@sina.com

Abstract:

Sequence stratigraphic concepts and methods provide novel tools for performing stratigraphic analysis, allowing us to improve our understanding of depositional models and basin evolution. Main controls and depositional elements (e.g. surfaces, systems tracts, parasequences, etc.) recognized in conventional sequence strati-graphy are designed for marine-related systems. In contrast, the sequence stratigraphy of lacustrine successions is much more complex, because it is not driven by sea-level changes, but by a complex interaction between tecto-nics and high-frequency climatic cycles. Through systematic analysis of lacustrine sedimentary systems, the re-levant concepts of lacustrine sequence stratigraphy were clarified. The controlling effects of allocyclic cycles on lacustrine sedimentation and sequence stratigraphy, accommodation space types of lacustrine basins and their significance for sequence stratigraphy and hydrocarbon genesis were explored.The results show that: (1) The lacustrine sedimentary conditions can be classified as three types: Underfilled, balanced-fill and overfilled lakes. There are significant differences in water salinity, sedimentary sequences, and system tracts under different lacustrine sedimentary conditions. Underfilled lakes are hydrologically closed lakes, and consequently, the lake-level can highly fluctuate, driven by high-frequency wet-dry climatic cycles. During wet periods, rivers supply water and sediments, resulting in fining-and thinning-upward elementary depositional sequences (EDS) accumulated during the transgressive systems tract (TST). In contrast, dry periods are characterized by a relative lake-level fall with the subaerial exposure of lake margin areas during the regressive systems tract (RST). Lake water salinity are brackish to hypersaline. Balanced-fill lakes are partially closed lakes, and consequently, they have characteristics of both underfilled and overfilled lakes. During the TST, the lake is in underfilled condition, and consequently, the introduction of water and sediment will accumulate a fining-upward interval until reaching the spill point during the maximum flooding. The RST is accumulated under an overfilled lake condition, with coarsening-upward progradational littoral deltas and related subaqueous delta deposits. Lake water salinity are brackish to freshwater. Overfilled lakes are hydrologically open lakes. Most deposits accumulate during the RST, forming coarsening-upward progradational littoral deposits, with associated subaqueous deltas. All overfilled lakes are freshwater lakes. (2) Subsidence is crucial for allowing the long-term preservation of lacustrine depo-sits. Lakes can temporarily store water and sediments in areas that lack subsidence, but these deposits will not be preserved in the stratigraphic record. Subsiding lakes develop permanent accommodation space and hanging lakes develop temporary accommodation space. Although hanging lakes cannot permanently store sediments,they can flood subsiding lakes with the near-instantaneous release of a substantial volume of water, creating favorable conditions for the accumulation of organic-rich shales. This rapid flooding from hanging lakes induced a forced transgression (FT), which is a large-scale rapid transgression (xenoconformity) not related to the normal sediment and water supply from local source areas.

Key words: lacustrine sequence stratigraphy, underfilled lakes, balanced-fill lakes, overfilled lakes, forced transgression, forced regression, allocyclic cycles, accommodation space

CLC Number: 

  • TE122.23

Fig. 1

Key elements that control lacustrine deposits and sequence stratigraphy"

Fig. 2

Overfilled, balanced-fill and underfilled lake basins based on variation of potential accommodation and sediment-water supply"

Fig. 3

Variations in relative lake-levels and their consequences of underfilled lakes"

Fig. 4

Internal organization, origin and significance of an elementary depositional sequence (EDS) developed in underfilled lakes"

Fig. 5

Outcrop photos of elementary depositional sequences (EDS) in underfilled lakes"

Fig. 6

Variations in relative lake-levels and their deposits/stacked patterns during balanced-fill lakes"

Fig. 7

Internal organization and formation mechanism of an elementary depositional sequence (EDS) developed in balanced-fill lakes"

Fig. 8

Outcrop photos of EDS developed in balanced-fill lake from Yanchang Formation, Ordos Basin"

Fig. 9

Main characteristics and depositional patterns in overfilled lakes"

Fig. 10

Types of river discharges and deposits in overfilled (freshwater) lakes"

Fig. 11

Internal organization and formation mechanism of an elementary depositional sequence (EDS) accumulated in overfilled lakes"

Fig. 12

Controlling factors for sedimentary evolution in terrestrial basins"

Fig. 13

Climate controls on EDS developed in underfilled lakes"

Fig. 14

Allocyclic cycles control on EDS developed in overfilled lakes"

Fig. 15

Relationship of lake-level changes with forced transgressions and regressions"

Fig. 16

Breaching of the spill point and formation of outflow river valleys during the maximum flooding period of the lake basin of the 7th member of Yanchang Formation in Triassic of Ordos Basin"

Fig. 17

Temporary and permanent accommodation space in lacustrine systems"

Fig. 18

Outcrop photos of typical forced transgression surface developed in terrestrial lake basins"

[1] GORE P J W. Towards a model of open-and closed-basin deposition in ancient lacustrine sequences:The Newark Supergroup (Triassic-Jurassic),eastern North America[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 1989, 70:29-52.
doi: 10.1016/0031-0182(89)90078-3
[2] BOHACS K M. Sequence stratigraphy of lake basins:Unraveling the influence of climate and tectonics[J]. AAPG Bulletin, 1999, 83(11):1-11.
[3] CARROLL A R, BOHACS K M. Stratigraphic classification of ancient lakes:Balancing tectonic and climatic control[J]. Geology, 1999, 27(2):99-102.
doi: 10.1130/0091-7613(1999)027<0099:SCOALB>2.3.CO;2
[4] BENAVIDE C A, BOHACS K M. Advances in limnogeology:The lake‐basin‐type model revisited 25 years after… anomalies,conundrums and upgrades[J]. The Depositional Record, 2024, 10(5):748-792.
doi: 10.1002/dep2.v10.5
[5] BOHACS K M, NEAL J E, CARROLL A R, et al. Lakes are not small oceans!Sequence stratigraphy in lacustrine basins[R]. Tulsa,SEPM Annual Meeting, 2000.
[6] VAIL P R, MITCHUM R M J, THOMPSON S I. Seismic stratigraphy and global changes of sea level,part 4:Global cycles of relative changes of sea level[M]//PAYTON C E. Seismic Stratigraphy:Applications to Hydrocarbon Exploration. Dallas: American Association of Petroleum Geologists, 1977.
[7] PAYTON C E. Seismic stratigraphy-applications to hydrocarbon exploration[M]. Dallas: American Association of Petroleum Geologists, 1977.
[8] VAN WAGONER J C, POSAMENTIER H W, MITCHUM R M, et al. An overview of the fundamentals of sequence stratigraphy and key definitions[M]// WILGUSC K, HASTINGSB S, POSAMENTIERH W. Sea-level changes:An integrated approach. Tulsa: Society of Economic Paleontologists and Mineralogists, 1988.
[9] KEIGHLEY D, FLINT S, HOWELL J, et al. Sequence strati-graphy in lacustrine basins:A model for part of the Green River Formation (Eocene),southwest Uinta Basin,Utah,USA[J]. Journal of Sedimentary Research, 2003, 73(6):987-1006.
doi: 10.1306/050103730987
[10] OLSEN P E. Periodicity of lake-level cycles in the late Triassic Lockatong Formation of the Newark Basin[M]// BERGERA. Milankovitch and climate. Dordrecht: Reidel, 1984:127-146.
[11] OLSEN H. Orbital forcing on continental depositional systems-lacustrine and fluvial cyclicity in the Devonian of East Greenland[M]// DE BOERP L, SMITHD G. Orbital forcing and cyclic sequences. Algiers: IAS Special Publications, 1994, 19:429-438.
[12] FISCHER A G, ROBERTS L T. Cyclicity in the Green River Formation (lacustrine Eocene) of Wyoming[J]. Journal of Sedimentary Petrology, 1991, 61(7):1146-1154.
[13] VAN VUGT N, STEENBRINK J, LANGEREIS C G, et al. Magnetostratigraphy-based astronomical tuning of the early Pliocene lacustrine sediments of Ptolemais (NW Greece) and bed to bed correlation with the marine record[J]. Earth and Planetary Science Letters, 1998, 164:535-551.
doi: 10.1016/S0012-821X(98)00236-2
[14] POSAMENTIER H W, VAIL P R. Eustatic controls on clastic deposition Ⅱ:sequence and systems tract models[M]// WILGUSC K, HASTINGSB S, POSAMENTIERH, et al. Sea level changes: An integrated approach. Tulsa Society of Economic Paleontologists and Mineralogists.
[15] PLINT A G, NUMMEDAL D. The falling stage systems tract:Recognition and importance in sequence stratigraphic analysis[J]. The Geological Society of London, 2000, 172(1):1-17.
[16] EMBRY A F, JOHANNESSEN E P. T-R sequence stratigraphy,facies analysis and reservoir distribution in the uppermost Triassic-Lower Jurassic succession,western Sverdrup Basin,Arctic Canada[J]. Norwegian Petroleum Society Special Publications, 1993, 2:121-146.
[17] EMBRY A F, JOHANNESSEN E P. Two approaches to sequence stratigraphy[M]// MONTENARIM. Stratigraphy & timescales.:Advances in sequence stratigraphy. Shanghai: Elsevier, 2017, 2:85-118.
[18] MUTTI E. Alcuni problemi relativi all’applicazione dei concetti della stratigrafia sequenziale all’Eocene e al Cretacico superiore sud-pirenaico[J]. Supplemento al Giornale di Geologia, 1989, 51:37-53.
[19] MUTTI E, DAVOLI G, MORA S, et al. The eastern sector of the south-central folded Pyrenean foreland:Criteria for stratigraphic analysis and excursion notes[R]. Parma,2nd International Conference on High-Resolution Sequence Stratigraphy, 1994.
[20] MUTTI E. Turbidite systems:An outcrop-based analysis[M]. Rio De Janeiro: Petrobras, 2023:466.
[21] MUTTI E, TINTERRI R, DI BIASE D, et al. Delta-front facies associations of ancient flood-dominated fluvio-deltaic systems[J]. Revista de la Sociedad Geológica de España, 2000, 13(2):165-190.
[22] VAN WAGONER J C, MITCHUM R M, CAMPION K M, et al. AAPG methods in exploration series NO. 7:Siliciclastic sequence stratigraphy in well logs,cores,and outcrops:Concepts for high-resolution correlation of time and facies[M]. Dallas, AAPG, 1990.
[23] WANG Xunlian. Criteria for defining and recognizing the various orders of sequences in outcrop sequence stratigraphy[J]. Science in China Series D:Earth Sciences, 2004, 7:618-629.
[24] CATUNEANU O. Principles of sequence stratigraphy[M]. 2nd ed. Amsterdam: Elsevier, 2022:486.
[25] CAMPBELL C V. Lamina,laminaset,bed and bedset[J]. Sedimentology, 1967, 8(1):7-26.
doi: 10.1111/sed.1967.8.issue-1
[26] MITCHUM R M, VAIL P R, THOMPSON S. AAPG Memoir:Seismic stratigraphy and global changes of sea level. Part 2:The depositional sequence as a basic unit for stratigraphic analysis[M]. Tulsa, AAPG, 1977.
[27] BEERBOWER J R. Cyclothems and cyclic depositional mechanisms in alluvial plain sedimentation[J]. Kansas State Geological Survey Bulletin, 1964, 169(1):32-42.
[28] MERRIMAN R J, HIGHLEY D E, CAMERON D G. Definition and characteristics of very-fine grained sedimentary rocks:Clay,mudstone,shale and slate[R]. Keyworth: British Geological Survey, 2003:20.
[29] RAMOS V A, KAY S M. Triassic rifting and associated basalts in the Cuyo Basin,central Argentina[M]. Boulder, Geological Society of America, 1991:79-92.
[30] SPALLETTI L A, FANNING M, WASHINGTON R C. Dating the Triassic continental rift in the southern Andes:The Potreri-llos Formation,Cuyo Basin,Argentina[J]. Geologica Acta, 2008, 6(3):267-283.
doi: 10.1344/105.000000256
[31] HOGG S L. Geology and hydrocarbon potential of the Neuquén Basin[J]. Journal of Petroleum Geology, 1993, 16(4):383-396.
doi: 10.1111/jpg.1993.16.issue-4
[32] HOWELL J, SCHWARZ E, SPALLETTI L, et al. The Neuquén Basin:An overview[J]. Geological Society,London,Special Publications, 2005, 252(1):1-14.
doi: 10.1144/GSL.SP.2005.252.01.01
[33] ZAVALA C, ARCURI M, DI MEGLIO M, et al. Jurassic uplift along the Huincul arch and its consequences in the stratigraphy of the Cuyo and Lotena groups,Neuquén Basin,Argentina [M]// DIEGOKIETZMANN D, FOLGUERAA. Opening and closure of the Neuquén Basin in the southern Andes. Cham: Springer, 2020:53-74.
[34] ZAVALA C, MARETTO H, DI MEGLIO M. Hierarchy of bounding surfaces in aeolian sandstones of the Jurassic Tordillo Formation (Neuquén Basin,Argentina)[J]. Geologica Acta, 2005, 3(2):133-145.
[35] ZAVALA C, MARTÍNEZ LAMPE J M, FERNÁNDEZ M, et al. El diacronismo entre las formaciones Tordillo y Quebrada del Sapo (Kimeridgiano) en el sector sur de la cuenca neuquina[J]. Revista de la Asociación Geológica Argentina, 2008, 63(4):754-765.
[36] ZAVALA C, PONCE J J, ARCURI M, et al. Ancient lacustrine hyperpycnites:A depositional model from a case study in the Rayoso Formation (Cretaceous) of west-central Argentina[J]. Journal of Sedimentary Research, 2006, 76(1):41-59.
doi: 10.2110/jsr.2006.12
[37] YANG Yongtai, LI Wei, MA Long. Tectonic and stratigraphic controls of hydrocarbon systems in the Ordos basin:A multicycle cratonic basin in central China[J]. AAPG Bulletin, 2005, 89(2):255-269.
doi: 10.1306/10070404027
[38] ZAVALA C, LIU Huaqing, LI Xiangbo, et al. Lacustrine sequence stratigraphy:New insights from the study of the Yanchang Formation (Middle-Late Triassic),Ordos Basin,China[M]// The Ordos Basin: Sedimentological research for hydrocarbons exploration. Amsterdam: Elsevier, 2022:309-335.
[39] PAN Shuxin, LIU Huaqing, ZAVALA C, et al. Sublacustrine hyperpycnal channel-fan system in a large depression basin:A case study of Nen 1 Member,Cretaceous Nenjiang Formation in the Songliao Basin,NE China[J]. Petroleum Exploration and Development, 2017, 44(6):911-922.
doi: 10.1016/S1876-3804(17)30103-9
[40] 武法东, 陈永进, 李寅, 等. 河北滦平盆地构造演化及对扇三角洲发育的控制作用[J]. 现代地质, 2000, 14(2):179-184.
WU Fadong, CHEN Yongjin, LI Yin, et al. Tectonic evolutions and their control on development of fan-deltaic depositional system in the Luanping Basin[J]. Geoscience, 2000, 14(2):179-184.
doi: 10.3390/geosciences14070179
[41] BALLY A W. Basins and subsidence:A summary[M]. Washington D.C.: American Geophysical Union, 1980:5-20.
[42] ZAVALA C, ARCURI M, ZORZANO A, et al. Deltas:New paradigms[J]. The Depositional Record, 2024, 10(5):600-636.
doi: 10.1002/dep2.v10.5
[43] KATZ B J. Lacustrine basin hydrocarbon exploration:Current thoughts[J]. Journal of Paleolimnology, 2001, 26(2):161-179.
doi: 10.1023/A:1011173805661
[44] GHINASSI M, D'ORIANO F, BENVENUTI M, et al. Lacustrine facies in response to millennial-century-scale climate changes (Lake Hayk,Northern Ethiopia)[J]. Journal of Sedimentary Research, 2015, 85(4):381-398.
doi: 10.2110/jsr.2015.28
[45] SCHUMM S A. The fluvial system[M]. New York: John Wiley & Sons, 1977:338.
[46] PERLMUTTER M A, MATTHEWS M D. Global cyclostratigraphy:A model[M]. Englewood Cliffs: Prentice Hall, 1989:233-260.
[47] DIGERFELDT G, OLSSON S, SANDGREN P. Reconstruction of lake-level changes in lake Xinias,central Greece,during the last 40,000 years[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 2000, 158(1/2):65-82.
doi: 10.1016/S0031-0182(00)00029-8
[48] OVEREEM I, KROONENBERG S B, VELDKAMP A, et al. Small-scale stratigraphy in a large ramp delta:Recent and Holocene sedimentation in the Volga delta,Caspian Sea[J]. Sedimentary Geology, 2003, 159(3/4):133-157.
doi: 10.1016/S0037-0738(02)00256-7
[49] SONG C, HUANG B, KE L, et al. Seasonal and abrupt changes in the water level of closed lakes on the Tibetan Plateau and implications for climate impacts[J]. Journal of Hydrology, 2014, 514:131-144.
doi: 10.1016/j.jhydrol.2014.04.018
[50] KAKROODI A A, LEROY S A G, KROONENBERG S B, et al. Late Pleistocene and Holocene sea-level change and coastal paleoenvironment evolution along the Iranian Caspian shore[J]. Marine Geology, 2015, 361:111-125.
doi: 10.1016/j.margeo.2014.12.007
[51] GLENN C R, KELTS K. Sedimentary rhythms in lake deposits[M]// EINSELEG, RICKENW, SEILACHERA. Cycles and events in stratigraphy. Berlin: Springer Verlag, 1991:188-221.
[52] BOHACS K M, CARROLL A R, NEAL J E. Lessons from large lake systems:Thresholds,nonlinearity,and strange atractors[M]// CHANM A, ARCHERA W. Extreme depositional environments:Mega end members in geologic time. Boulder, Geological Society of America, 2003.
[53] CARROLL A R, BOHACS K M. Lake-type controls on petroleum source rock potential in nonmarine basins[J]. AAPG Bulletin, 2001, 85(6):1033-1053.
[54] LAHIJANI H A K, BENI A N, TUDRYN A, et al. Unraveling extreme events from deep water cores of the south Caspian Sea[J]. Quaternary International, 2019, 540:111-119.
doi: 10.1016/j.quaint.2019.07.027
[55] KOSTIANOY A G, KOSAREV A N. The Caspian Sea environment[M]. Berlin: Springer Verlag, 2005:271.
[56] BAGNOLD R A. Auto-suspension of transported sediment; turbidity currents[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1962, 265(1322):315-319.
[57] MACHLUS M L, OLSEN P E, CHRISTIE-BLICK N, et al. Spectral analysis of the lower Eocene Wilkins Peak Member,Green River Formation,Wyoming:Support for Milankovitch cyclicity[J]. Earth and Planetary Science Letters, 2008, 268(1/2):64-75.
doi: 10.1016/j.epsl.2007.12.024
[58] XIA Shiqiang, LIN Changsong, DU Xiaofeng, et al. Correspondences among lacustrine fluctuations,climate changes and the Milankovitch cycles in the Paleogene through tracking onlap points and correlating palaeontology in Liaozhong Depression,Bohai Bay Basin,NE China[J]. Geological Journal, 2020, 55(9):6527-6543.
doi: 10.1002/gj.3825
[59] HENRICH R, CHERUBINI Y, MEGGERS H. Climate and sea level induced turbidite activity in a canyon system offshore the hyperarid Western Sahara (Mauritania):The Timiris Canyon[J]. Marine Geology, 2010, 275(1/4):178-198.
doi: 10.1016/j.margeo.2010.05.011
[60] 李相博, 刘化清, 杨伟伟, 等. 一个由干湿交替极端气候事件主导的内陆湖盆:来自鄂尔多斯盆地上三叠统延长组露头剖面的沉积学证据[J]. 地球科学, 2023, 48(1):293-316.
LI Xiangbo, LIU Huaqing, YANG Weiwei, et al. Lacustrine basin driven by extreme events of alternate dry-wet climatic cycles:Evidence from outcrops of Yanchang Formation in Upper Tria-ssic,Ordos Basin[J]. Earth Science, 2023, 48(1):293-316.
[61] SCHUMM S A. Geomorphic thresholds and complex response of drainage systems[M]// MORISAWAM. Fluvial geomorpho-logy. Binghamton: State University of New York, 1973:299-310.
[62] FITZSIMMONS K E. Reconstructing palaeoenvironments on desert margins:New perspectives from Eurasian loess and Australian dry lake shorelines[J]. Quaternary Science Reviews, 2017, 171:1-19.
doi: 10.1016/j.quascirev.2017.05.018
[63] SCHLESINGER W H. The formation of caliche in soils of the Mojave Desert,California[J]. Geochimica et Cosmochimica Acta, 1985, 49(1):57-66.
doi: 10.1016/0016-7037(85)90191-7
[64] DONOVAN J J, ROSE A W. Geochemical evolution of lacustrine brines from variable-scale groundwater circulation[J]. Journal of Hydrology, 1994, 154(1/4):35-62.
doi: 10.1016/0022-1694(94)90211-9
[65] MEINIKMANN K, LEWANDOWSKI J, NÜTZMANN G. Lacustrine groundwater discharge:Combined determination of volumes and spatial patterns[J]. Journal of Hydrology, 2013, 502:202-211.
doi: 10.1016/j.jhydrol.2013.08.021
[66] XING Lida, LOCKLEY M G, QIN Zuohuan, et al. Dinosaur tracks from the Lower Cretaceous Xiguayuan Formation in the Luanping Basin,Hebei Province,China[J]. Cretaceous Research, 2019, 103:104163.
doi: 10.1016/j.cretres.2019.06.009
[67] LI Xiangbo, LIU Huaqing, ZAVALA C, et al. A flooding-dominated lacustrine basin:Upper Triassic fluvial-crevasse to fluvial-delta successions in the Yanhe and Shiwanghe Sections,Ordos Basin,China[M]// HUXiumian. Field trip guidebook on Chinese sedimentary geology. Singapore: Springer Nature, 2024:727-758.
[68] MULDER T, SYVITSKI J P, MIGEON S, et al. Marine hyperpycnal flows:Initiation,behavior and related deposits. A review[J]. Marine and Petroleum Geology, 2003, 20(6/8):861-882.
doi: 10.1016/j.marpetgeo.2003.01.003
[69] ZAVALA C, ARCURI M, DI MEGLIO M, et al. Deltas:A new classification expanding Bates’s concepts[J]. Journal of Palaeogeography, 2021, 10(1):1-15.
doi: 10.1186/s42501-020-00080-y
[70] WANG Shuai, SHAO Longyi, WANG Dongdong, et al. Controls on accumulation of anomalously thick coals:Implications for sequence stratigraphic analysis[J]. Sedimentology, 2020, 67(2):991-1013.
doi: 10.1111/sed.12670
[71] EINSELE G, SEILACHER A. Cyclic and event stratification[M]. Berlin: Springer Verlag, 1982:536.
[72] CECIL C B. The concept of autocyclic and allocyclic controls on sedimentation and stratigraphy, emphasizing the climatic variable[M]. Tulsa: SEPM Society for Sedimentary Geology, 2003:13-20.
[73] CECIL C B, DIMICHELE W, FEDORKO N, et al. Autocyclic and allocyclic controls on the origin of the Dunkard Group[R]// HARPER J A. Geology of the Pennsylvanian-Permian in the Dunkard Basin. Washington,Guidebook of 76th Annual Field Conference of Pennsylvania Geologists, 2011.
[74] MUTTI E, SONNINO M. Compensation cycles:A diagnostic feature of turbidite sandstone lobes[R]. Bologna,Abstract IAS 2nd European Meeting, 1981.
[75] FRAZIER D E. Recent deltaic deposits of the Mississippi River:Their development and chronology[J]. Transactions of the Gulf Coast Association of Geological Societies, 1967, 27:287-315.
[76] CORREGGIARI A, CATTANEO A, TRINCARDI F. The mo-dern Po Delta system:Lobe switching and asymmetric prodelta growth[J]. Marine Geology, 2005, 222:49-74.
[77] MIALL A D. Cyclicity and the facies model concept in fluvial deposits[J]. Bulletin of Canadian Petroleum Geology, 1980, 28(1):59-79.
[78] ANDERSON E J, GOODWIN P W. The significance of metre-scale allocycles in the quest for a fundamental stratigraphic unit[J]. Journal of the Geological Society, 1990, 147(3):507-518.
doi: 10.1144/gsjgs.147.3.0507
[79] GUO Jingxiang, JIANG Zaixing, XIE Xiangyang, et al. Deep-lacustrine sediment gravity flow channel-lobe complexes on a stepped slope:An example from the Chengbei Low Uplift,Bohai Bay Basin,East China[J]. Marine and Petroleum Geology, 2020, 124:104839.
doi: 10.1016/j.marpetgeo.2020.104839
[80] SHANG Wenliang, XU Shaohua, MAO Zhenqiang, et al. High-resolution sequence stratigraphy in continental lacustrine basin:A case of Eocene Shahejie Formation in the Dongying Depression,Bohai Bay Basin[J]. Marine and Petroleum Geology, 2022, 136:105438.
doi: 10.1016/j.marpetgeo.2021.105438
[81] FENG Youliang, LI Sitian, LU Yongchao. Sequence stratigraphy and architectural variability in Late Eocene lacustrine strata of the Dongying Depression,Bohai Bay Basin,Eastern China[J]. Sedimentary Geology, 2013, 295:1-26.
doi: 10.1016/j.sedgeo.2013.07.004
[82] FU Sheng, LIU Zhen, ZHANG Yiming, et al. Depositional systems and sequence stratigraphy of Mesozoic lacustrine rift basins in NE China:A case study of the Wulan-Hua sag in the southern Erlian Basin[J]. Journal of Asian Earth Sciences, 2019, 174:68-98.
doi: 10.1016/j.jseaes.2018.11.020
[83] LIU Hao, VAN LOON A T, XU Jie, et al. Relationships between tectonic activity and sedimentary source-to-sink system para-meters in a lacustrine rift basin:A quantitative case study of the Huanghekou Depression (Bohai Bay Basin,E China)[J]. Basin Research, 2020, 32(4):587-612.
doi: 10.1111/bre.12374
[84] PILLANS B, CHAPPELL J, NAISH T R. A review of the Milan-kovitch climatic beat:Template for Plio-Pleistocene sea-level changes and sequence stratigraphy[J]. Sedimentary Geology, 1998, 122(1/2/3/4):5-21.
doi: 10.1016/S0037-0738(98)00095-5
[85] LOBO F J, RIDENTE D. Milankovitch cyclicity in modern continental margins:Stratigraphic cycles in terrigenous shelf settings[J]. Boletín Geológico Y Minero, 2013, 124(2):169-185.
[86] KAKROODI A A, KROONENBERG S B, HOOGENDOORN R M, et al. Rapid Holocene sea-level changes along the Iranian Caspian coast[J]. Quaternary International, 2012, 263:93-103.
doi: 10.1016/j.quaint.2011.12.021
[87] MOHLER R R, WILKINSON M J, GIARDINO J R. The extreme reduction of Lake Chad surface area:Input to paleoclimatic reconstructions[R]. New Orleans,Geological Society of America Abstracts with Program 1995 Annual Meeting, 1995.
[88] LEEDER M R, HARRIS T, KIRKBY M J. Sediment supply and climate change:Implications for basin stratigraphy[J]. Basin Research, 1998, 10(1):7-18.
doi: 10.1046/j.1365-2117.1998.00054.x
[89] CARVAJAL C, STEEL R, PETTER A. Sediment supply:The main driver of shelf-margin growth[J]. Earth-Science Reviews, 2009, 96(4):221-248.
doi: 10.1016/j.earscirev.2009.06.008
[90] BENDER V B, HANEBUTH T J, MENA A, et al. Control of sediment supply,palaeoceanography and morphology on Late Quaternary sediment dynamics at the Galician continental slope[J]. Geo-Marine Letters, 2012, 32:313-335.
doi: 10.1007/s00367-012-0282-2
[91] JERVEY M T. Quantitative geological modeling of siliciclastic rock sequences and their seismic expression[M]// WILGUSC K, HASTINGSB S, POSAMENTIERH, et al. Sea-level changes: An integrated approach. Tulsa,Society of Economic Paleontologists and Mineralogists, 1988.
[92] CLARKE G K C, MATHEWS W H, PACK R T. Outburst floods from glacial Lake Missoula[J]. Quaternary Research, 1984, 22:289-299.
doi: 10.1016/0033-5894(84)90023-1
[93] O'CONNOR J E, BAKER V R. Magnitudes and implications of peak discharges from glacial Lake Missoula[J]. Geological Society of America Bulletin, 1992, 104(3):267-279.
doi: 10.1130/0016-7606(1992)104<0267:MAIOPD>2.3.CO;2
[94] O'CONNOR J E, BAKER V R, WAITT R B, et al. The Missoula and Bonneville floods:A review of ice-age mega floods in the Columbia River basin[J]. Earth-Science Reviews, 2020, 208:103181.
doi: 10.1016/j.earscirev.2020.103181
[95] DENLINGER R P, GEORGE D L, CANNON C M, et al. Diverse cataclysmic floods from Pleistocene glacial Lake Missoula[M]. Boulder,Geological Society of America, 2021:1-18.
[96] HALVERSON G P. Introducing the xenoconformity[J]. Geo-logy, 2017, 45(7):671-672.
[97] MUTTI E, GULISANO C A, LEGARRETA L. Anomalous systems tracts stacking patterns within third order depositional sequences(Jurassic-Cretaceous Back Arc Neuquén Basin,Argentine Andes)[R]. Tremp,Second High-Resolution Sequence Stratigraphy Conference, 1994.
[98] BARREDO S P. Geodynamic and tectonostratigraphic study of a continental rift:The Triassic Cuyana Basin,Argentina[M]// SHARKOVE. Tectonics:Recent Advances. Berlin: Springer, 2012:99-130.
[99] BOGGETTI D, SCOLARI J C, REGAZZONI C. Cuenca Cu-yana:Marco geológico y reseña histórica de la actividad petrolera[M]. Buenos Aires: Asociación Geológica Argentina, 2002:585-604.
[100] ZAVATTIERI A M, PRÁMPARO M B. Freshwater algae from the Upper Triassic Cuyana Basin of Argentina:Palaeoenvironmental implications[J]. Palaeontology, 2006, 49(6):1185-1209.
doi: 10.1111/pala.2006.49.issue-6
[101] VILLAR H J, PÜTTMANN W. Geochemical characteristics of crude oils from the Cuyo Basin,Argentina[J]. Organic Geochemistry, 1990, 16(1/2/3):511-519.
doi: 10.1016/0146-6380(90)90066-9
[102] SIMMS M J, RUFFELL A H. Synchroneity of climatic change and extinctions in the Late Triassic[J]. Geology, 1989, 17:265-268.
doi: 10.1130/0091-7613(1989)017<0265:SOCCAE>2.3.CO;2
[103] SIMMS M J, RUFFELL A H. Climatic and biotic change in the Late Triassic[J]. Journal of the Geological Society, 1990, 147(2):321-327.
doi: 10.1144/gsjgs.147.2.0321
[1] QU Xingyu. Sequence stratigraphy division and petroleum geological significance in the middle submember of the third member of Shahejie Formation in Liangdong area, Dongying Sag [J]. Lithologic Reservoirs, 2025, 37(2): 166-177.
[2] FANG Rui, JIANG Yuqiang, CHEN Qin, ZENG Lingping, LUO Yuzhuo, ZHOU Yadong, DU Lei, YANG Guangguang. Sedimentary characteristics of Jurassic Shaximiao Formation in Wubaochang area, northeastern Sichuan Basin [J]. Lithologic Reservoirs, 2023, 35(2): 47-58.
[3] YANG Fan, BIAN Baoli, LIU Huiying, YAO Zongquan, YOU Xincai, LIU Hailei, WEI Yanzhao. Sedimentary characteristics of fan delta in restricted lacustrine basin of Permian Xiazijie Formation in Mahu Sag [J]. Lithologic Reservoirs, 2022, 34(5): 63-72.
[4] SHANG Wenliang, XU Shaohua, CAI Molun, GAO Hongcan, LI Xiaogang, CHEN Cen, CAI Change, QIN Lei. Discussion on seismic identification characteristics and controlling factors of sediment bypass [J]. Lithologic Reservoirs, 2020, 32(6): 85-96.
[5] WANG Hang, YANG Haifeng, HUANG Zhen, BAI Bing, GAO Yanfei. A new model for sedimentary evolution of fluvial faices based on accommodation space change and its impact on hydrocarbon accumulation: a case study of Kenli-A structure in Laizhouwan Depression [J]. Lithologic Reservoirs, 2020, 32(5): 73-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
TRENDMD: