Lithologic Reservoirs ›› 2010, Vol. 22 ›› Issue (3): 110-113.doi: 10.3969/j.issn.1673-8926.2010.03.021

Previous Articles     Next Articles

Comparative analysis of elastic impedance

WANG Hao1, LUO Bing2, LI Ting3   

  1. 1. Deyang Branch of Exploration and Development Research Institute of Southwest Oilfield Company, Sinopec, Deyang 618000, China; 2. Research Institute of Exploration and Development, Jianghan Oilfield Company, Sinopec, Qianjiang 433124, China; 3. Kingdream Public Limited Company, Qianjiang 433124, China
  • Online:2010-09-15 Published:2010-09-15

Abstract:

Presently, there are variously methods for calculating elastic impedance by different seismic elastic impedance inversion softwares, and seismic elas tic impedance inversion were often simply applied though some requirements hadn’t been discussed in detail, which causes yield difficulties for actual productions. Therefore, based on four typical types of gas-bearing sandstone models, calculation accuracy of elastic impedance(EI), reflected impedance(RI) and generalized elastic impedance (GEI) are analyzed and compared. Moreover, based on Biot-Gassman theory, fluid replacement is applied for gas-bearing sandstones model advanced by Ostrander, and the sensitivity to fluid of different elastic impedance is discussed when water saturation changed. The following conclusions can be obtained through the calculation of four types of gas-bearing sandstone models: As for Class Ⅰ and Class Ⅳ, Zoeppritz equations can be substituted forthe EI, RI and GEI when the incident angle is less than 40 ;As forClass Ⅱ, Zoppritz equations can also be substituted when the incident angle is less than 30 ; However, these three kinds of elastic impedance can not be applied for Class Ⅲ; The idea of the partial derivative is applied for the gas-bearing sandstone models advanced by Ostrander, the result shows that, RI is more sensitive to fluid than EI and GEI as incident angle is bigger.

Key words: clastic rocks, seismic reservoir, seismic stratigraphy, sequence stratigraphy, seismic sedimentology, production seismology, seismic technology

[1] Lu Shaoming,McMechan G A.Elastic impedance inversion of multichannel seismic data from unconsolidated sediments containing gas hydrate and free gas[J]. Geophysics,2004,69(1):164-179.
[2] Whitcombe D N,Connolly P A,Reagan R L,et al. Extended elastic impedance for fluid and lithology prediction[J]. Geophysics,2002,67(1):63-67.
[3] 刘云武,吴海波,刘金平.大庆长垣南部扶杨油层河道砂体预测方法与应用[J].大庆石油地质与开发,2006,25(5):106-108.
[4] 张奎,倪逸.三种弹性波阻抗公式比较[J].石油地球物理勘探,2006,41(增刊):7-11.
[5] Connolly P. Elastic impedance[J]. The Leading Edge,1999,18:438-452.
[6] Santos L T,Tygel M,Buginga R. Reflection Impedance[C]. SEG 72nd Annual Meeting expanded abstracts,Salt Lake City,Utah,2002.
[7] 马劲风.地震勘探中广义弹性阻抗的正反演[J].地球物理学报,2003,46(1):118-124.
[8] Rutherford S R,Williams R H. Amplitude-versus-offset variations in gas sands[J]. Geophysics,1989,54(6):680-688.
[9] Castagna J P,Swan H W.Principles of AVO crossplotting[J]. The Leading Edge,1997,16(4):337-344.
[10] Gomez C T,Tatham R H. Sensitivity analysis of seismic reflectivity to partial gas saturation[J]. Geophysics,2007,72(3):45-57.
[11] Ostrander W J. Plane-wave reflection coefficients for gas sands at nonormal angles of incidence[J]. Geophysics,1984,49(10):1 637-1 648.
[1] LUO Beiwei, YIN Jiquan, HU Guangcheng, CHEN Hua, KANG Jingcheng, XIAO Meng, ZHU Qiuying, DUAN Haigang. Characteristics and controlling factors of high porosity and permeability limestone reservoirs of Cretaceous Cenomanian in the western United Arab Emirates [J]. Lithologic Reservoirs, 2023, 35(6): 63-71.
[2] LI Ling, ZHANG Zhaokun, LI Minglong, NI Jia, GENG Chao, TANG Sizhe, YANG Wenjie, TAN Xiucheng. Sequence stratigraphic characteristics and favorable reservoirs distribution of Permian Qixia Stage in Weiyuan-Gaoshiti area, Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(6): 32-46.
[3] WEN Huaguo, LIANG Jintong, ZHOU Gang, QIU Yuchao, LIU Sibing, LI Kunyu, HE Yuan, CHEN Haoru. Sequence-based lithofacies paleogeography and favorable natural gas exploration areas of Cambrian Xixiangchi Formation in Sichuan Basin and its periphery [J]. Lithologic Reservoirs, 2022, 34(2): 1-16.
[4] CHANG Shaoying, LIU Lingli, CUI Yuyao, WANG Feng, SONG Mingxing, MU Xiaoliang. Seismic sedimentary characterization of thin sand layers of shallow water deltas: A case study of Qingshuihe Formation in Fangcaohu area, Junggar Basin [J]. Lithologic Reservoirs, 2022, 34(1): 139-147.
[5] FENG Xue, GAO Shengli, LIU Yongtao, WANG Xiuzhen. Characteristics of delta front progradation structure of Yanchang Formation in Longdong area,Ordos Basin [J]. Lithologic Reservoirs, 2021, 33(6): 48-58.
[6] WANG Qiao, SONG Lixin, HAN Yajie, ZHAO Huimin, LIU Ying. Depositional system and sequence stratigraphy of the third member of Paleo-gene Shahejie Formation in Leijia area, Western Liaohe Depression [J]. Lithologic Reservoirs, 2021, 33(6): 102-113.
[7] ZHANG Wenwen, HAN Changcheng, TIAN Jijun, ZHANG Zhiheng, ZHANG Nan, LI Zhengqiang. Sequence stratigraphy division and evolutionary features of Permian Lucaogou Formation in Jimsar Sag [J]. Lithologic Reservoirs, 2021, 33(5): 45-58.
[8] LIU Huaqing, FENG Ming, GUO Jingyi, PAN Shuxin, LI Hailiang, HONG Zhong, LIANG Sujuan, LIU Caiyan, XU Yunze. Seismic reflection and sedimentary characteristics of deep-water gravity flow channels on the slope of lacustrine depression basin: First member of Nenjiang Formation in LHP area, Songliao Basin [J]. Lithologic Reservoirs, 2021, 33(3): 1-12.
[9] LUO Xiaotong, WEN Huaguo, PENG Cai, LI Yun, ZHAO Yan. Sedimentary characteristics and high-precision sequence division of lacustrine carbonate rocks of BV Formation in L oilfield of Santos Basin,Brazil [J]. Lithologic Reservoirs, 2020, 32(3): 68-81.
[10] LI Jiasi, FU Lei, ZHANG Jinlong, CHEN Jing, NIU Bin, ZHANG Shuncun. Diagenesis and secondary pore evolution of Middle and Upper Permian clastic rocks in Wu-Xia area,Junggar Basin [J]. Lithologic Reservoirs, 2019, 31(6): 54-66.
[11] ZHAO Hanqing, WEN Huiyun, MU Pengfei, LI Chao, WU Qiongyuan. Sedimentary characteristics of near-source braided river delta of the upper third member of Shahejie Formation in Kenli A oilfield [J]. Lithologic Reservoirs, 2019, 31(3): 37-44.
[12] YANG Ying, YANG Wei, ZHU Shijun. Method for high-resolution sequence stratigraphy division based on Ensemble Empirical Mode Decomposition [J]. Lithologic Reservoirs, 2018, 30(5): 59-67.
[13] LIU Huaqing, SU Mingjun, NI Changkuan, HONG Zhong, CUI Xiangli, HU Kaifeng, LI Zhengyang, MAO Junli. Thin bed prediction from interbeded background: Revised seismic sedimentological method [J]. Lithologic Reservoirs, 2018, 30(2): 1-11.
[14] SUN Chunyan, HU Mingyi, HU Zhonggui. Characteristics of sequence stratigraphy of the Lower Triassic Feixianguan Formation in Dachuan-Wanxian area,northeastern Sichuan Basin [J]. Lithologic Reservoirs, 2017, 29(4): 30-37.
[15] WU Aijun, XU Jianyong, TENG Binbin, XIAO Lingli, KANG Bo, LI Fanyi, YIN Binhao. Fine description method of dynamic provenance and its application:a case from Yanan Sag,Qiongdongnan Basin [J]. Lithologic Reservoirs, 2017, 29(4): 55-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] KUANG Hongwei, GAO Zhenzhong, WANG Zhengyun, WANG Xiaoguang. A type of specific subtle reservoir : Analysis on the origin of diagenetic trapped reservoirs and its significance for exploration in Xia 9 wellblock of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(1): 8 -14 .
[2] LI Guojun, ZHENG Rongcai, TANG Yulin, WANG Yang, TANG Kai. Sequence-based lithofacies and paleogeography of Lower Triassic Feixianguan Formation in northeastern Sichuan Basin[J]. Lithologic Reservoirs, 2007, 19(4): 64 -70 .
[3] CAI Jia. Sedimentary facies of Neogene Sanya Formation in Changchang Sag, Qiongdongnan Basin[J]. Lithologic Reservoirs, 2017, 29(5): 46 -54 .
[4] ZHANG Hui, GUAN Da, XIANG Xuemei, CHEN Yong. Prediction for fractured tight sandstone reservoir of Xu 4 member in eastern Yuanba area,northeastern Sichuan Basin[J]. Lithologic Reservoirs, 2018, 30(1): 133 -139 .
[5] FU Guang, LIU Bo, LV Yanfang. Comprehensive evaluation method for sealing ability of mudstone caprock to gas in each phase[J]. Lithologic Reservoirs, 2008, 20(1): 21 -26 .
[6] MA Zhongliang, ZENG Jianhui, ZHANG Shanwen, WANG Yongshi,WANG Hongyu, LIU Huimin. Migration and accumulation mechanism of sand lens reservoirs and its main controlling factors[J]. Lithologic Reservoirs, 2008, 20(1): 69 -74 .
[7] WANG Yingming. Analysis of the mess in sequence hierarchy applied in the industrialized application of the sequence stratigraphy[J]. Lithologic Reservoirs, 2007, 19(1): 9 -15 .
[8] WEI Pingsheng, PAN Shuxin, WAN G Jiangong,LEI Ming. Study of the relationship between lithostratigraphic reservoirs and lakeshore line:An introduction on lakeshore line controlling oil /gas reservoirs in sag basin[J]. Lithologic Reservoirs, 2007, 19(1): 27 -31 .
[9] YI Dinghong, SHI Lanting, JIA Yirong. Sequence stratigraphy and subtle reservoir of Aershan Formation in Baorao Trough of Jiergalangtu Sag[J]. Lithologic Reservoirs, 2007, 19(1): 68 -72 .
[10] YANG Zhanlong, PENG Licai, CHEN Qilin, GUO Jingyi,LI Zaiguang, HUANG Yunfeng. Petroleum accumulation condition analysis and lithologic reservoir exploration in Shengbei Depression of Turpan-harmy Basin[J]. Lithologic Reservoirs, 2007, 19(1): 62 -67 .
TRENDMD: