Lithologic Reservoirs ›› 2011, Vol. 23 ›› Issue (1): 57-61.doi: 10.3969/j.issn.1673-8926.2011.01.009

Previous Articles     Next Articles

Sedimentary facies and lithofacies characteristics of modern Chaobai River

GUO Ling, JIANG Zaixing, XU Jie   

  1. Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism, Ministry of Education, China University of Geosciences, Beijing 100083, China
  • Online:2011-02-20 Published:2011-02-20

Abstract:

The lithofacies and sedimentary facies of modern Chaobai River in Baimiao(Tongzhou district in Beijing) are detailedly studied by digging deep trenches, pits and field profile. It is shown that Baimiao is a meandering river sedimentary body. Eight lithofacies are identified, and they are massive bedding fine conglomerate(clay gravel-based), large-scale low-angle trough cross bedding fine sandstone,low-angle trough cross bedding fine-grained sand-stone, synsedi-mentary distortion bedding fine sandstone, parallel bedding fine sandstone, tabular and wavy cross bedding fine sandstone, thin massive bedding siltymudstone and fine sandstone and massive beddingmuddy siltstone. Two subfacies developed and they are river channel and flood plain sub-phase. Five kinds of microfacies named riverbed, point bar,levee, crevasse splay and floodplain developed in Chaobai River in Baimiao. Sedimentary body of Chaobai River developed three sedimentary cycles in vertical and they are controlled by sediment supply, climate and quality of river banks. The analysis of lithofacies and sedimentary facies is significant for finding lithologic reservoir and the development and utilization of Chaobai River.

Key words: seismic data, wavelet transform, time-frequency analysis, sedimentarymicrofacies, sedimentary cycle

[1] 史建南,郑荣才,韩永林,等.鄂尔多斯盆地姬塬地区长8 油层组岩性油藏成藏机理研究[J].岩性油气藏,2009,21(3):129-133.
[2] 张巧凤,王余庆,王天琦.松辽盆地薄互层河道砂岩地震预测技术[J].岩性油气藏,2007,19(1):92-95.
[3] Miall A D. Architectural-element analysis:A new method of facies analysis applied to fluvial deposits[J]. Earth-Science Reviews,2003,22(4):261-308.
[4] 王良忱.沉积环境和沉积相[M].北京:石油工业出版社,1996:14-32.
[5] 谢庆宾,朱筱敏,管守锐,等.中国现代网状河流沉积特征和沉积模式[J].沉积学报,2003,21(2):219-227.
[6] 赵忠新,王华,刘君荣.河流、沙漠与湖泊沉积环境下形成的层序的对比分析[J].石油天然气学报,2006,28(1):1-6.
[7] 薛培华.河流点坝相储层模式概论[M].北京:石油工业出版社,1991:50-77.
[8] 王雷,刘国涛,龙涛,等.一种曲流河点坝体内部侧积体描述方法[J].岩性油气藏,2008,20(4):132-134.
[9] 陈永峤,靳文奇,文志刚,等.靖安油田张渠一、二区长213 沉积微相研究[J].岩性油气藏,2008,20(4):43-46.
[10] 姜在兴.沉积学[M].北京:石油工业出版社,2010:138-152.
[11] 张昌民,尹太举,李少华,等.基准面旋回对河道砂体几何形态的控制作用———以枣园油田孔一段枣Ⅱ—Ⅲ油组为例[J].岩性油气藏,2007,19(40):9-12.
[12] 付志国.河流沉积储层砂体内部非均质表征[D].成都:成都理工大学,2007.
[13] 陈斐,魏登峰,余小雷,等. 鄂尔多斯盆地盐定地区三叠系延长组长2 油层组沉积相研究[J].岩性油气藏,2010,22(1):43-47.
[14] 石雪峰,杜海峰. 姬塬地区长3—长4+5 油层组沉积相研究[J].岩性油气藏,2008,20(1):59-63.
[15] 马凤荣,张树林,王连武.现代嫩江大马岗段河流沉积微相划分及其特征[J].大庆石油学院学报,2001,25(2):8-11.
[16] 倪晋仁,王随继,王光谦.现代冲积河流的河型空间转化模式探讨[J].沉积学报,2000,18(1):1-6.
[17] 吴朝东,刘建民,王军,等.河流沉积单元分析与储层宏观非均质性[J].地质科学,2003,38(1):60-73.
[1] YANG Wuyang, WEI Xinjian, LI Haishan. The past,present and future of intelligent geophysical technology [J]. Lithologic Reservoirs, 2024, 36(2): 170-188.
[2] HU Zhonggui, WANG Jixuan, LI Shilin, GUO Yanbo, ZUO Yun'an, PANG Yulai. High-frequency sequence division and geological significance of dolomiteevaporite paragenetic strata of Cambrian Gaotai Formation in eastern Sichuan Basin [J]. Lithologic Reservoirs, 2023, 35(2): 113-124.
[3] QING Fan, YAN Jianping, WANG Jun, GENG Bin, WANG Min, ZHAO Zhenyu, CHAO Jing. Division of sedimentary cycle of sandy conglomerate body and its relationship with physical properties: a case study from the upper submenber of the fourth member of Shahejie Formation in Y920 block of northern steep slope zone in Dongying Sag [J]. Lithologic Reservoirs, 2020, 32(6): 50-61.
[4] DIAO Rui. Monitoring and evaluation technology for high resolution processing of seismic data [J]. Lithologic Reservoirs, 2020, 32(1): 94-101.
[5] ZHAO Yan, MAO Ningbo. Time-varying wavelet deconvolution method based on zero-offset VSP data [J]. Lithologic Reservoirs, 2019, 31(6): 88-94.
[6] YANG Zhanlong, SHA Xuemei, WEI Lihua, HUANG Junping, XIAO Dongsheng. Seismic subtle sequence boundary identification,high-frequency sequence framework establishment and lithologic trap exploration: a case study of Jurassic to Cretaceous in the western margin of Turpan-Kumul Basin [J]. Lithologic Reservoirs, 2019, 31(6): 1-13.
[7] ZHANG Jiankun, WU Xin, FANG Du, WANG Fanglu, GAO Wenzhong, CHEN Xiaojun. Seismic identification of narrow and thin channel sandbodies of the second member of Guantao Formation in Matouying Uplift [J]. Lithologic Reservoirs, 2018, 30(6): 89-97.
[8] YANG Ying, YANG Wei, ZHU Shijun. Method for high-resolution sequence stratigraphy division based on Ensemble Empirical Mode Decomposition [J]. Lithologic Reservoirs, 2018, 30(5): 59-67.
[9] SHI Zhanzhan, WANG Yuanjun, TANG Xiangrong, PANG Su, CHI Yuelong. Reservoir prediction based on seismic waveform classification in time-frequency domain [J]. Lithologic Reservoirs, 2018, 30(4): 98-104.
[10] LIU Teng, WANG Jun, ZHANG Jingsi, ZHANG Li, CAI Shaowu. Application of Wheeler transform combined with time-frequency analysis technology to lithologic reservoir characterization of Bohai Oilfield [J]. Lithologic Reservoirs, 2018, 30(3): 124-132.
[11] Zhang Yufei,Yuan Hao . Recognition and attenuation of multiples in land seismic data [J]. LITHOLOGIC RESERVOIRS, 2015, 27(6): 104-110.
[12] Liu Xuefeng, Ma Yiyun, Zeng Qihong, Shao Yanlin, Zhang Youyan, Ye Yong. Geological information extraction and analysis based on digital outcrop :A case of Yangjiagou section of the Upper Triassic Yanchang Formation in Ordos Basin [J]. LITHOLOGIC RESERVOIRS, 2015, 27(5): 13-18.
[13] WANG Zhenglai,JIANG Hongfu,GUAN Linlin,PAN Zhongliang,XU Yanlong. Formation mechanism of favorable reservoir of complex fault block reservoir in Hailaer Basin [J]. LITHOLOGIC RESERVOIRS, 2015, 27(1): 26-31.
[14] CHEN Keyang, CHEN Shumin, LI Lailin, WANG Jianmin,WU Qingling, FAN Xingcai. A high-accuracy automatic identification and self-adaptive suppression method for single-frequency interference [J]. Lithologic Reservoirs, 2014, 26(3): 109-113.
[15] SHI Zhanzhan, PANG Su, TANG Xiangrong, HE Zhenhua. Carbonate reservoir characterization based on low-frequency shadow method by matching pursuit algorithm [J]. Lithologic Reservoirs, 2014, 26(3): 114-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Lithologic Reservoirs, 2022, 34(2): 0 .
[2] LI Zaiguang,LI Lin. Automatic mapping based on well data[J]. Lithologic Reservoirs, 2007, 19(2): 84 -89 .
[3] CHENG Yuhong,GUO Yanru,ZHENG Ximing,FANG Naizhen,MA Yuhu. The interpretation method and application effect determined by multiple seismic and logging factors[J]. Lithologic Reservoirs, 2007, 19(2): 97 -101 .
[4] LIU Juntian,JIN Zhenjia,LI Zaiguang,TAN Xinping,GUO Lin,WANG Bo,LIU Yuxiang. Controlling factors for lithologic hydrocarbon reservoirs and petroleum prospecting target in Xiaocaohu area , Taibei Sag[J]. Lithologic Reservoirs, 2007, 19(3): 44 -47 .
[5] SHANG Changliang, FU Shouxian. Application of 3D seismic survey in loess tableland[J]. Lithologic Reservoirs, 2007, 19(3): 106 -110 .
[6] WANG Changyong, ZHENG Rongcai, WANG Jianguo, CAO Shaofang, Xiao Mingguo. Sedimentary characteristics and evolution of Badaowan Formation of Lower Jurassic in northwest margin of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(2): 37 -42 .
[7] WANG Ke1 LIU Xianyang, ZHAO Weiwei, SONG Jianghai, SHI Zhenfeng, XIANG Hui. Char acter istics and geological significance of seismites of Paleogene in Yangxin Subsag of J iyang Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 54 -59 .
[8] SUN Hongbin, ZHANG Fenglian. Structural-sedimentary evolution char acter istics of Paleogene in Liaohe Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 60 -65 .
[9] LI Chuanliang. Can uplift r esult in abnormal high pr essur e in formation?[J]. Lithologic Reservoirs, 2008, 20(2): 124 -126 .
[10] WEI Qinlian,ZHENG Rongcai,XIAO Ling,MA Guofu,DOU Shijie,TIAN Baozhong. Study on horizontal heterogeneity in Serie Inferiere of Triassic in 438b block , Algeria[J]. Lithologic Reservoirs, 2009, 21(2): 24 -28 .
TRENDMD: