Lithologic Reservoirs ›› 2014, Vol. 26 ›› Issue (3): 59-66.doi: 10.3969/j.issn.1673-8926.2014.03.010

Previous Articles     Next Articles

Characteristics and controlling factors of dolomite reservoirs of Lower Ordovician Penglaiba Formation in Yubei area

LIN XinJIANG HaijunY UE YongWU Liming
  

  1. Research Institute of Exploration and Development, Northwest Oilfield Company, Sinopec, Urumqi 830011, China
  • Online:2014-06-06 Published:2014-06-06

Abstract:

Penglaiba Formation of Lower Ordovician in Yubei area becomes the target stratum for oil and gas exploration of marine carbonate rocks in Tarim Basin, and it developed large amounts of dolomite reservoirs. Due to the deep burial and low degree of exploration of dolomite, the cognition of its origin is not perfect and need further studying. Based on field geological inspection, core observation, identification of thin section, physical properties analysis, combined with SEM and the results of isotope geochemistry of carbon, oxygen and strontium, this paper analyzed the characteristics and controlling factors of dolomite reservoirs of Penglaiba Formation in Yubei area. The dolomites of Penglaiba Formation consist of replacement dolomite and recrystallization dolomite, which can be further subdivided into three categories, silty crystalline dolomite, medium grained dolomite and coarse crystalline dolomite in terms of grain size, and the most important reservoir rock is medium grained dolomite. The reservoir space in dolomites is subject to intercrystal pores, intercrystal dissolved pores, intracrystal dissolve pores, dissolved pores and fractures as migration channels. Dissolved pores and fractures are the most important reservoir space. The most common reservoir space is mainly the overlapped complex of cracks and cavities. Fracturing and its associated fractures and karstification are the keys for the development of dolomite reservoir of Lower Ordovician Penglaiba Formation. Fault activities control the development of associated fractures, which makes fresh surface water or deep hydrothermal infiltrate or upwell along faults and fractures, and then dissolution occurs. Atmospheric fresh water karstification effectively improves the dolomite reservoir properties at the top of Penglaiba Formation, while the hydrothermal karstification results in poor development of the lower reservoir of Penglaiba Formation, owing to filling with silica in the most holes and crakes.

Key words:  source rock, caprock, spatial matching relation, oil-gas accumulation, control action, Fangzheng fault depression

[1] Machel H G. Concepts and models of dolomitization:A critical reappraisal[G]∥Braithwaite C J R,Rizz G,Darke G. The geometry and petrogenesis of dolomite hydrocarbon reservoirs. London:GeologicalSociety Publications 235,2004:7-63.
[2] Warren J. Dolomite:occurrence,evolution and economically important associations[J]. Earth-Science Review,2000,52(1/2/3):1-81.
[3] Zenger D H, Dunham J B, Ethington R L. Concepts and models of dolomitizatio [G]. Tulsa:Society of Eonomic Paleontologists and Mineralogists, Special Publication 28,1980:1-320.
[4] Sun S Q. Dolomite reservoirs,porosity evolution and reservoir,characteristic [J]. AAPG,Bulletin,1995,79(2):186-204.
[5] Davies G R,Smith L B. Structurally controlled hydrothermal dolomite reservoir facies:An overview[J]. AAPG Bulletin,2006,90(11):1641-1690.
[6] Feng Zengzhao,Zhang Yongsheng,Jin Zhenkui. Type,origin,and reservoir characteristics of dolostones of the Ordovician Majiagou Group,Ordos,North China Platform[J]. Sedimentary Geology,1998,118(1/2/3/4):127-140.
[7] 钱一雄,Conxita Taberner,邹森林,等.碳酸盐岩表生岩溶与埋藏溶蚀比较———以塔北和塔中地区为例[J].海相油气地质,2007,12(2): 1-7.
[8] 焦存礼,刑秀娟,何碧竹,等.塔里木盆地下古生界白云岩储层特征与成因类型[J].中国地质,2011,38(4):1008-1015.
[9] 黄文辉,王安甲,万欢,等.塔里木盆地寒武-奥陶系碳酸盐岩储集特征与白云岩成因探讨[J].古地理学报,2012,14(2):197-208.
[10] 王伟力,刘洛夫,陈利新,等.塔里木盆地轮古东地区奥陶系碳酸盐岩储集层发育控制因素及有利区带预测[J].古地理学报,2010,12(1):107-115.
[11] 丁文龙,漆立新,云露,等.塔里木盆地巴楚-麦盖提地区古构造演化及其对奥陶系储层发育的控制作用[J].岩石学报,2012,28(8):2542-2556.
[12] 杜永明,余腾孝,郝建龙,等.塔里木盆地玉北地区断裂特征及控制作用[J].断块油气田,2013,20(2):170-174.
[13] 王振宇,杨柳明,马锋,等.塔中地区下奥陶统鹰山组白云岩成因研究[J].岩性油气藏,2012,24(1):20-25.
[14] 李凌,谭秀成,陈景山,等.塔中北部中下奥陶统鹰山组白云岩特征及成因[J].西南石油大学学报:自然科学版,2007,29(1):34-36.
[15] 张新海,王晓东,阳国进,等.巴楚地区上寒武—下奥陶统丘里塔格群碳酸盐岩储层特征[J].地质力学学报,2002,8(3):257-264.
[16] 王嗣敏,吕修祥.塔中地区奥陶系碳酸盐岩储层特征及其油气意义[J].西安石油大学学报:自然科学版,2004,19(4):72-76.
[17] 张军涛,胡文瑄,钱一雄,等.塔里木盆地白云岩储层类型划分、测井模型及其应用[J].地质学报,2008,82(3):380-386.
[18] 朱井泉,吴仕强,王国学,等.塔里木盆地寒武—奥陶系主要白云岩类型及孔隙发育特征[J].地学前缘,2008,15(2):67-79.
[19] 韩革华,漆立新,李宗杰,等.塔河油田奥陶系碳酸盐岩缝洞型储层预测技术[J].石油与天然气地质,2006,27(6):860-870.
[20] 郑剑,林新,王振宇,等.塔中北斜坡地区奥陶系鹰山组储层差异性分析[J].岩性油气藏,2012,24(5):89-93.
[21] 倪新锋,杨海军,沈安江,等.塔北地区奥陶系灰岩段裂缝特征及其对岩溶储层的控制[J].石油学报,2010,31(6):933-940.
[22] 徐微,蔡忠贤,林忠民,等.塔河油田奥陶系碳酸盐岩油藏岩溶成因类型[J].海相油气地质,2012,17(1):66-72.
[23] 李宇翔,李国蓉,顾炎午,等.塔中地区寒武系—下奥陶统白云岩层序不整合面控制的大气水溶蚀作用研究[J].岩性油气藏,2009,21(2):45-48.
[24] 蔡春芳,梅博文,马亭,等.塔里木盆地有机酸来源、分布及对成岩作用的影响[J].沉积学报,1997,15(3):105-111.
[25] 吴茂炳,王毅,郑孟林,等.塔中地区奥陶纪碳酸盐岩热液岩溶及其对储层的影响[J].中国科学D 辑:地球科学,2007,37(增刊1):83-92.
[26] 刘树根,黄文明,张长俊,等.四川盆地白云岩成因的研究现状及存在问题[J].岩性油气藏,2008,20(2):6-15.
[27] 郑剑锋,沈安江,潘文庆,等.塔里木盆地下古生界热液白云岩储层的主控因素及识别特征[J].海相油气地质,2011,16(4):47-56.
[1] HONG Guoliang, WANG Hongjun, ZHU Houqin, BAI Zhenhua, WANG Wenwen. Hydrocarbon accumulation conditions and favorable zones of lithologic reservoirs of Miocene Gumai Formation in block J,South Sumatra Basin [J]. Lithologic Reservoirs, 2023, 35(6): 138-146.
[2] HAN Yunhao, JIANG Zhenxue, ZHANG Zhiyao, ZHU Guangyou. Favorable geological conditions for the formation of ultra-high petroleum columns in petroliferous basins [J]. Lithologic Reservoirs, 2023, 35(2): 125-135.
[3] FAN Caiwei, JIA Ru, LIU Bo, FU Xiaofei, HOU Jingxian, JIN Yejun. Caprock evaluation and its reservoir control of different accumulation systems in central depression zone of Yinggehai Basin [J]. Lithologic Reservoirs, 2023, 35(1): 36-48.
[4] TIAN Guangrong, WANG Jiangong, SUN Xiujian, LI Hongzhe, YANG Wei, BAI Yadong, PEI Mingli, ZHOU Fei, SI Dan. Hydrocarbon accumulation differences and main controlling factors of Jurassic petroleum system in Altun piedmont of Qaidam Basin [J]. Lithologic Reservoirs, 2021, 33(1): 131-144.
[5] GENG Tao, MAO Xiaoping, WANG Haochen, FAN Xiaojie, WU Chonglong. Thermal evolution history and prediction of favorable zones in Lunpola Basin [J]. Lithologic Reservoirs, 2019, 31(6): 67-78.
[6] Chen Hehe,Zhu Xiaomin,Chen Chunfang,Yin Wei . Characteristics of source-reservoir-caprock assemblage and hydrocarbon accumulation of Yanchang Formation in Binchang block, Ordos Basin [J]. Lithologic Reservoirs, 2016, 28(2): 56-63.
[7] FU Guang, WU Wei. Oil-gas accumulation models and their main controlling factors in Wuerxun-Beier Depression [J]. Lithologic Reservoirs, 2015, 27(1): 14-20.
[8] FU Guang, L IU Tongxi, SHI Jijian, L I Y unfei, Y ANG Lifeng. Spatial matching relation between source rock and caprock and its control action on oil-gas accumulation in Fangzheng fault depression [J]. Lithologic Reservoirs, 2014, 26(5): 9-14.
[9] L IANG Mingliang, WANG Zuodong, ZHENG Jianjing, L I Xiaoguang, WANG Xiaofeng, QIAN Yu. Organic geochemistry characteristics of source rocks in Liaohe Depression [J]. Lithologic Reservoirs, 2014, 26(4): 110-116.
[10] ZHAO Tianlin1, LUO Jinglan, DENG Yuan, LI Miao, BAI Xuejing, GUO Tao. Sequence stratigraphic framework and source-reservoir-caprock assemblage of Yanchang Formation in western Nanliang area, Ordos Basin [J]. Lithologic Reservoirs, 2013, 25(5): 49-58.
[11] FU Guang, LIU Bo, LV Yanfang. Comprehensive evaluation method for sealing ability of mudstone caprock to gas in each phase [J]. Lithologic Reservoirs, 2008, 20(1): 21-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Lithologic Reservoirs, 2022, 34(2): 0 .
[2] LI Zaiguang,LI Lin. Automatic mapping based on well data[J]. Lithologic Reservoirs, 2007, 19(2): 84 -89 .
[3] CHENG Yuhong,GUO Yanru,ZHENG Ximing,FANG Naizhen,MA Yuhu. The interpretation method and application effect determined by multiple seismic and logging factors[J]. Lithologic Reservoirs, 2007, 19(2): 97 -101 .
[4] LIU Juntian,JIN Zhenjia,LI Zaiguang,TAN Xinping,GUO Lin,WANG Bo,LIU Yuxiang. Controlling factors for lithologic hydrocarbon reservoirs and petroleum prospecting target in Xiaocaohu area , Taibei Sag[J]. Lithologic Reservoirs, 2007, 19(3): 44 -47 .
[5] SHANG Changliang, FU Shouxian. Application of 3D seismic survey in loess tableland[J]. Lithologic Reservoirs, 2007, 19(3): 106 -110 .
[6] WANG Changyong, ZHENG Rongcai, WANG Jianguo, CAO Shaofang, Xiao Mingguo. Sedimentary characteristics and evolution of Badaowan Formation of Lower Jurassic in northwest margin of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(2): 37 -42 .
[7] WANG Ke1 LIU Xianyang, ZHAO Weiwei, SONG Jianghai, SHI Zhenfeng, XIANG Hui. Char acter istics and geological significance of seismites of Paleogene in Yangxin Subsag of J iyang Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 54 -59 .
[8] SUN Hongbin, ZHANG Fenglian. Structural-sedimentary evolution char acter istics of Paleogene in Liaohe Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 60 -65 .
[9] LI Chuanliang. Can uplift r esult in abnormal high pr essur e in formation?[J]. Lithologic Reservoirs, 2008, 20(2): 124 -126 .
[10] WEI Qinlian,ZHENG Rongcai,XIAO Ling,MA Guofu,DOU Shijie,TIAN Baozhong. Study on horizontal heterogeneity in Serie Inferiere of Triassic in 438b block , Algeria[J]. Lithologic Reservoirs, 2009, 21(2): 24 -28 .
TRENDMD: