岩性油气藏 ›› 2020, Vol. 32 ›› Issue (4): 163–171.doi: 10.12108/yxyqc.20200417

• 石油工程 • 上一篇    下一篇

深水气井测试温压场耦合模型求解及实现

李紫晗1, 何玉发1, 张滨海1, 钟海全2   

  1. 1. 中海油研究总院有限责任公司, 北京 100028;
    2. 西南石油大学 石油与天然气工程学院, 成都 610500
  • 收稿日期:2019-05-20 修回日期:2019-10-22 出版日期:2020-08-01 发布日期:2020-06-16
  • 第一作者:李紫晗(1989-),男,硕士,工程师,主要从事非常规油气、深水油气开发及采油方面的研究工作。地址:(100028)北京市朝阳区太阳宫南街6号院中国海油大厦A座。Email:lizh19@cnooc.com.cn
  • 通信作者: 何玉发(1980-),男,博士,高级工程师,主要从事深水测试、完井技术及油气井管柱力学方面的研究工作。Email:heyf@cnooc.com.cn。
  • 基金资助:
    国家重点基础研究发展计划(“973”计划)课题“深水油气井完井与测试优化方法”(编号:2015CB251205)资助

Solution and realization of coupled model of temperature and pressure field in deep water gas well testing

LI Zihan1, HE Yufa1, ZHANG Binhai1, ZHONG Haiquan2   

  1. 1. CNOOC Research Institute Co., Ltd., Beijing 100028, China;
    2. School of Petroleum Engineering, Southwest Petroleum University, Chengdu 610500, China
  • Received:2019-05-20 Revised:2019-10-22 Online:2020-08-01 Published:2020-06-16

摘要: 为求解深水气井测试温压场耦合模型,需优选气液两相流动模型,结合两相嘴流模型、两相持液率公式、两相产能方程,建立关于时间和空间的非稳态压降与传热模型差分方程组,并采用Newton Raphson方法计算,实现对开井放喷瞬态过程的模拟。结果表明:①该方法真实再现了放喷过程中液位上升和地层产气等2个阶段;②预测井口参数与现场工况吻合,井口压力、温度平均误差小于5%,满足工程精度要求;③模拟结果再现了井筒内诱喷液及测试完井液动态过程,为合理制定测试设计提供依据;④高产能深水气井测试期间,应采用较大尺寸管柱及油嘴放喷,提高清井速度,防止冰堵。算例分析结果表明数学模型真实反映了深水气井测试放喷过程。该研究成果对深水气井测试方案设计及后续跟踪评价具有指导意义。

关键词: 深水气井测试, 井筒多相流, 温压场耦合, 数值仿真模拟, 非稳态流动

Abstract: To seek the solution of the coupled model of temperature and pressure field in deep-water gas well testing,it is necessary to optimize the gas-liquid two-phase flow model. Based on two-phase nozzle flow model,twophase liquid holdup formula and two-phase productivity equation,the differential equations of unsteady pressure drop and heat transfer model about time and space were established,and Newton Raphson method was applied to realize the simulation of the transient process of blowout. The results show that:(1)The method can truly simulate the two stages of liquid level rising and formation gas production in blowout stage. (2)The predicted wellhead parameters are consistent with actual conditions,and the average error of wellhead pressure and temperature is less than 5%,which meets the engineering accuracy requirements.(3)The simulation results reconstructed the dynamic process of induced flow and test completion fluid blowout in wellbore, and can provide basis for reasonable test design.(4)For deep water gas wells with high productivity,larger size string and nozzle should be used to improve well cleaning speed and prevent ice blockage. The example analysis shows that the mathematical model truly reflects the test blowout process of deep water gas wells. The research results have certain guiding significance for the test scheme design and follow-up evaluation of deep water gas wells.

Key words: deep water well testing, multiphase flow, coupled model of temperature and pressure field, numerical simulation, unsteady flow

中图分类号: 

  • TE33+2
[1] 王跃曾, 唐海雄, 陈奉友. 深水高产气井测试实践与工艺分析.石油天然气学报(江汉石油学院学报), 2009, 31(5):148-151. WANG Y Z, TANG H X, CHEN F Y. Test practice and process analysis of high production gas wells in deep water. Journal of Oil and Gas Technology(Journal of Jianghan Petroleum Institute), 2009, 31(5):148-151.
[2] 何吉祥, 段永刚, 何玉发.深水测试设计影响因素分析.油气井测试, 2013, 22(2):67-69. HE J X, DUAN Y G, HE Y F. Influencing factor to design of the deep water well test. Well Testing, 2013, 22(2):67-69.
[3] 鹿克峰, 简洁, 张彦振, 等.井筒变流量气井携液临界流量的确定方法:以东海西湖凹陷多层合采气井为例.岩性油气藏, 2017, 29(3):147-151. LU K F, JIAN J, ZHANG Y Z, et al. A new method of measuring critical liquid carrying flow rate in the variable wellborerate gas well:a case of multi-completion gas wells in Xihu Sag, the East China Sea. Lithologic Reservoirs, 2017, 29(3):147-151.
[4] 周雪梅, 段永刚, 何玉发, 等.深水气井测试流动保障研究.石油天然气学报(江汉石油学院学报), 2014, 36(5):149-153. ZHOU X M, DUAN Y G, HE Y F, et al. The flow assurance of deep water gas-well testing. Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute), 2014, 36(5):149-153.
[5] 陈欢, 李紫晗, 曹砚锋, 等.临兴致密气井井筒积液动态模拟分析.岩性油气藏, 2018, 30(2):154-160. CHEN H, LI Z H, CAO Y F, et al. Dynamic simulation analysis of wellbore liquid loading in gas well for Linxing gas field. Lithologic Reservoirs, 2018, 30(2):154-160.
[6] 张崇, 任冠龙, 董钊, 等.深水气井测试井筒温度场预测模型的建立及应用.中国海上油气, 2016, 28(5):78-84. ZHANG C, REN G L, DONG Z, et al. Establishment and application of a wellbore temperature field prediction model for deep water gas well testing. China Offshore Oil and Gas, 2016, 28(5):78-84.
[7] EZZATTY N N, SHADA I H, KHAZALI-ROSLI K A, et al. Managing wellbore pressures by modeling of narrow margin deep water exploration well in Malaysia. SPE 189254, 2017.
[8] 高永海, 孙宝江, 王志远, 等.深水钻探井筒温度场的计算与分析.中国石油大学学报(自然科学版), 2008, 32(2):58-62. GAO Y H, SUN B J, WANG Z Y, et al. Calculation and analysis of wellbore temperature field in deep water drilling. Journal of China University of Petroleum(Edition of Natural Science), 2008, 32(2):58-62.
[9] KABIR C S, YI X, JAKYMEC M, et al. Interpreting distributedtemperature measurements gathered in deep water gas-well testing. SPE 166333, 2013.
[10] RENDEIRO C M, KELSO C M. An investigation to improve the accuracy of calculating bottom hole pressures in flowing gas wells producing liquids. SPE 17307, 1988.
[11] DRANCHUK P M, ABOU-KASSEM H. Calculation of z factors for natural gases using equations of state. Journal of Canadian Petroleum, 1975, 14(3):33-36.
[12] CURTIS M R, WITTERHOLT E J. Use of the temperature log for determining flow rates in producing wells. SPE 4637, 1973.
[13] JOHNSON D, SIERRA J, KAURA D, et al. Successful flow profiling of gas wells using distributed temperature sensing data. SPE 103097, 2006.
[14] KABIR C S, IZGEC B, HASAN A R, et al. Computing flow profiles and total flow rate with temperature surveys in gas wells. Journal of Natural Gas Science & Engineering, 2011, 4:1-7.
[15] ISMADI D, KABIR C S, HASAN A R. The use of combined static and dynamic-material-balance methods with real-time surveillance data in volumetric gas reservoirs. SPE Reservoir Evaluation & Engineering, 2012, 15(3):351-360.
[16] IZGEC B, KABIR C S, ZHU D, et al. Transient fluid and heat flow modeling in coupled wellbore/reservoir systems. SPE Reservoir Evaluation & Engineering, 2007, 10(3):294-301.
[17] ISMADI D, KABIR C S, HASAN A R. The use of combined static-and dynamic-material-balance methods with real-time surveillance data in volumetric gas reservoirs. SPE Reservoir Evaluation & Engineering, 2012, 15(3):351-360.
[18] 何玉发, 李紫晗, 高飞, 等. 深水气井测试清井诱喷瞬态流动模拟. 天然气工业, 2018, 38(11):59-64. HE Y F, LI Z H, GAO F, et al. Transient flow simulation on the induced flow in well cleaning during deep water gas well tests. Natural Gas Industry, 2018, 38(11):59-64.
[19] 吴木旺, 杨红君, 梁豪, 等.基于临界流量的深水探井测试关键技术与实践:以琼东南盆地深水区为例. 天然气工业, 2015, 35(10):65-70. WU M W, YANG H J, LIANG H, et al. Key techniques and practices of critical flow based tests for deep water exploration wells:a case study of deep water area in the Qiongdongnan Basin. Natural Gas Industry, 2015, 35(10):65-70.
[20] IZGEC B, HASAN A R, LIN D, et al. Flow rate estimation from wellhead-pressure and temperature data. SPE 115790, 2008.
[21] SARKER S, MOELEKER P, CHIN G, et al. Optimizing operational performance of riser systems through improved understanding of riser thermal behavior. IPTC 17185, 2013.
[22] CHURCHILL S W, CHU H H S. Correlating equations for laminar and turbulent free convection from a vertical plate. International Journal of Heat and Mass Transfer, 1975, 18(11):1323-1329.
[23] 周赵川, 王辉, 代向辉, 等.海上采油井筒温度计算及隔热管柱优化设计.石油机械, 2014, 42(4):43-48. ZHOU Z C, WANG H, DAI X H, et al. Calculation of offshore oil production wellbore temperature and optimal design of heatproof string. China Petroleum Machinery, 2014, 42(4):43-48.
[24] 鲁港, 李新强, 杨兆臣, 等. 井筒热损失计算的改进算法.特种油气藏, 2006, 13(3):99-101. LU G, LI X Q, YANG Z C, et al. Improved algorithm of wellbore heat loss calculation. Special Oil and Gas Reservoirs, 2006, 13(3):99-101.
[25] 于继飞, 吴晓东, 韩国庆, 等.海上油井井口温度计算方法探讨.中国海上油气, 2009, 21(5):332-337. YU J F, WU X D, HAN G Q, et al. The discussion about how to calculate offshore wellhead temperature. China Offshore Oil and Gas, 2009, 21(5):332-337.
[26] SACHDEVA R,SCHMIDT Z,BRILL J P. Two-phase flow through chocks. SPE 15657, 1986.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . 2022年 34卷 2 期 封面[J]. 岩性油气藏, 2022, 34(2): 0 .
[2] 李在光, 李琳. 以井数据为基础的AutoCAD 自动编绘图方法[J]. 岩性油气藏, 2007, 19(2): 84 -89 .
[3] 程玉红, 郭彦如, 郑希民, 房乃珍, 马玉虎. 井震多因素综合确定的解释方法与应用效果[J]. 岩性油气藏, 2007, 19(2): 97 -101 .
[4] 刘俊田,靳振家,李在光,覃新平,郭 林,王 波,刘玉香. 小草湖地区岩性油气藏主控因素分析及油气勘探方向[J]. 岩性油气藏, 2007, 19(3): 44 -47 .
[5] 商昌亮,付守献. 黄土塬山地三维地震勘探应用实例[J]. 岩性油气藏, 2007, 19(3): 106 -110 .
[6] 王昌勇, 郑荣才, 王建国, 曹少芳, 肖明国. 准噶尔盆地西北缘八区下侏罗统八道湾组沉积特征及演化[J]. 岩性油气藏, 2008, 20(2): 37 -42 .
[7] 王克, 刘显阳, 赵卫卫, 宋江海, 时振峰, 向惠. 济阳坳陷阳信洼陷古近纪震积岩特征及其地质意义[J]. 岩性油气藏, 2008, 20(2): 54 -59 .
[8] 孙洪斌, 张凤莲. 辽河坳陷古近系构造-沉积演化特征[J]. 岩性油气藏, 2008, 20(2): 60 -65 .
[9] 李传亮. 地层抬升会导致异常高压吗?[J]. 岩性油气藏, 2008, 20(2): 124 -126 .
[10] 魏钦廉,郑荣才,肖玲,马国富,窦世杰,田宝忠. 阿尔及利亚438b 区块三叠系Serie Inferiere 段储层平面非均质性研究[J]. 岩性油气藏, 2009, 21(2): 24 -28 .