岩性油气藏 ›› 2024, Vol. 36 ›› Issue (2): 1–14.doi: 10.12108/yxyqc.20240201

• 新能源与伴生资源 • 上一篇    

全球天然氢气勘探开发利用进展及中国的勘探前景

窦立荣1, 刘化清1, 李博1, 齐雯1, 孙东1, 尹路1, 韩双彪2   

  1. 1. 中国石油勘探开发研究院, 北京 100083;
    2. 中国矿业大学(北京)地球科学与测绘工程学院, 北京 100083
  • 收稿日期:2023-11-01 修回日期:2023-11-12 发布日期:2024-03-06
  • 通讯作者: 李博(1993—),男,博士,工程师,主要从事油气伴生资源勘探与评价技术研究。Emali:libo618@petrochina.com.cn。 E-mail:libo618@petrochina.com.cn。
  • 作者简介:窦立荣(1965—),男,博士,教授级高级工程师,主要从事全球油气资源评价与海外重点领域油气勘探关键技术研究。地址: (100083)北京市海淀区学院路20号。Email:dlirong@petrochina.com.cn。
  • 基金资助:
    国家自然科学基金“特提斯演化控制下的油气差异富集机理与勘探领域”(编号:92255302)和中国石油集团公司科技重大专项“海外油气地质新理论资源评价新技术与超前选区研究”(编号:2023ZZ07)联合资助。

Global natural hydrogen exploration and development situation and prospects in China

DOU Lirong1, LIU Huaqing1, LI Bo1, QI Wen1, SUN Dong1, YIN Lu1, HAN Shuangbiao2   

  1. 1. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China;
    2. College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China
  • Received:2023-11-01 Revised:2023-11-12 Published:2024-03-06

摘要: 在全球能源脱碳背景下,天然氢气作为一种一次能源,因其零碳、可再生的优点而备受关注,但中国目前还未开展专门针对天然氢气的勘探工作。通过介绍全球已知高含量天然氢气(体积分数大于10%)气藏的主要形成地质环境及成因类型,系统总结了天然氢气富集的有利地质条件,并结合国外天然氢气的勘探开发现状,评价了中国天然氢气的勘探前景。研究结果表明:①全球高含量天然氢气主要发育于蛇绿岩带、裂谷和前寒武系富铁地层中,且以无机成因为主,富铁矿物的蛇纹石化过程是天然氢气最主要的成因来源,其次为地球深部脱气和水的辐解。②优质的氢源与良好的运移通道是氢气富集的前提,而盖层的封盖能力是天然氢气能否成藏的关键要素;天然氢气作为伴生气时,传统盖层对其具备封盖能力,但当其含量较高时,传统盖层可能难以形成有效封盖;裂谷环境、蛇绿岩发育区以及断裂发育的前寒武系富铁地层是富氢气藏的勘探有利区。③国外多个国家和地区已制定了天然氢气的勘探开发和利用计划,其中,马里已实现天然氢气的商业开采,美国、澳大利亚也已成功钻探天然氢气勘探井。④中国高含量氢气区与富氢地质条件高度匹配,天然氢气勘探前景良好,郯庐断裂带及周缘裂陷盆地区、阿尔金断裂带及两侧盆地区、三江构造带—龙门山断裂带及周缘盆地区的天然氢气勘探潜力较大;中国应尽快开展天然氢气普查工作,加强氢气成藏过程研究和潜力评价,并进行勘探技术、开采分离技术和储运技术的攻关,为天然氢气的大规模开发利用做好技术储备。

关键词: 新能源, 天然氢气, 无机成因, 地球深部脱气, 水辐解, 蛇绿岩带, 裂谷, 前寒武系富铁地层, 郯庐断裂带, 阿尔金断裂带, 三江构造带—龙门山断裂带

Abstract: With the decarbonization of energy worldwide,natural hydrogen,as a primary energy,has gained widespread interest for its carbon-free emission and renewability. However,natural hydrogen has not yet to be explored in China. Through the review of the main geological settings and genesis of natural hydrogen with a high content(greater than 10%)discovered worldwide,the beneficial geological factors for natural hydrogen accumulation were systematically summarized,and the exploration prospects of natural hydrogen in China were evaluated based on the exploration and development status of natural hydrogen abroad. The results show that:(1)Global high content natural hydrogen is mainly developed in ophiolite belts,rift valley,and Precambrian iron-rich strata,mainly inorganic genesis,and the serpentinization process of iron-rich minerals is the most critical source of natural hydrogen,followed by degassing in the deep earth and water radiolysis.(2)High-quality hydrogen sources and good migration channels are the prerequisites for hydrogen enrichment,and the sealing ability of the cap rocks is a key element for the formation of natural hydrogen reservoirs. When natural hydrogen is used as associated gas,the traditional cap rocks can seal it,but may be difficult to form effective sealing when its content is high. The rift valley environment,ophiolite development areas,and the fracture-developed Precambrian iron-rich strata are the favorable areas for the exploration of hydrogen-rich gas reservoirs.(3)Many countries and regions abroad have formulated plans to explore,develop,and utilize natural hydrogen. Mali has realized commercial exploita‐tion of natural hydrogen,and the United States and Australia have also successfully drilled natural hydrogen ex‐ploration wells.(4)The areas with high hydrogen content in China are highly compatible with hydrogen-rich geological conditions,and the prospects of natural hydrogen exploration are good. The Tan-Lu fault zone and the peripheral rift basin areas,the Altyn fault zone and the basin areas on both sides,and the Sanjiang orogenic beltLongmenshan fault zone and peripheral basin areas have great natural hydrogen exploration potential. China should carry out the survey work of natural hydrogen as soon as possible,strengthen the research on hydrogen reservoir accumulation process and potential evaluation,and carry out research on exploration technology,ex‐traction and separation technology,and storage and transportation technology,to prepare technological reserves for large-scale development and utilization of natural hydrogen.

Key words: renewable energy, natural hydrogen, inorganic genesis, degassing in the deep earth, water radiolysis, ophiolite belt, rift valley, Precambrian iron-rich strata, Tan-Lu fault zone, Altyn fault zone, Sanjiang orogenic belt-Longmenshan fault zone

中图分类号: 

  • P618.13
[1] 邹才能,张福东,郑德温,等. 人工制氢及氢工业在我国"能源自主"中的战略地位[J]. 天然气工业,2019,39(1):1-10. ZOU Caineng,ZHANG Fudong,ZHENG Dewen,et al. Strategic role of the synthetic hydrogen production and industry in energy independence of China[J]. Natural Gas Industry,2019, 39(1):1-10.
[2] GAUCHER E C. New perspectives in the industrial exploration for native hydrogen[J]. Elements,2020,16(1):8-9.
[3] IEA. The future of hydrogen:Seizing today's opportunities[R]. Osaka:International Energy Agency,2019.
[4] 常宏岗. 天然气制氢技术及经济性分析[J]. 石油与天然气化工,2021,50(4):53-57. CHANG Honggang. Technical and economic analysis of hydrogen production from natural gas[J]. Chemical Engineering of Oil & Gas,2021,50(4):53-57.
[5] 陈英杰. 天然气制氢技术进展及发展趋势[J]. 煤炭与化工, 2020,43(11):130-133. CHEN Yingjie. Technical progress and development trend of hydrogen production from natural gas[J]. Coal Chemical Industry, 2020,43(11):130-133.
[6] 北京金正纵横信息咨询有限公司. 中国氢能产业发展蓝皮书(2023)[R]. 2023. Beijing Jinzheng Information Consutting Co.,Ltd. Blue book on the development of China's hydrogen energy industry(2023)[R]. 2023.
[7] 北极星氢能网. 预计到2050年我国可再生能源电解水制氢将占制氢总量的70%[EB/OL]. https://news.bjx.com.cn/html/20210208/1135582.shtml, 2021-02-08. QN.BJX.COM.CN. Hydrogen production from electrolyzed water from renewable energy sources is expected to account for 70% of the total hydrogen production in China by 2050[EB/OL]. https://news.bjx.com.cn/html/20210208/1135582.shtml, 2021-02-08.
[8] 王帅,杨志芳. 能源新势力、双碳主力军:氢能专题报告[R]. 深圳:兴业证券,2022. WANG Shuai,YANG Zhifang. New energy force,dual carbon main force:Hydrogen energy special report[R]. Shenzhen:Industrial Securities,2022.
[9] 孟庆强,金之钧,刘文汇,等. 天然气中伴生氢气的资源意义及其分布[J]. 石油实验地质,2014,36(6):712-717. MENG Qingqiang,JIN Zhijun,LIU Wenhui,et al. Distribution and genesis of hydrogen gas in natural gas[J]. Petroleum Geology Experiment,2014,36(6):712-717.
[10] 韩双彪,唐致远,杨春龙,等. 天然气中氢气成因及能源意义[J]. 天然气地球科学,2021,32(9):1270-1284. HAN Shuangbiao,TANG Zhiyuan,YANG Chunlong,et al. Genesis and energy significance of hydrogen in natural gas[J]. Natural Gas Geoscience,2021,32(9):1270-1284.
[11] 田黔宁,张炜,王海华,等. 能源转型背景下不可忽视的新能源:天然氢[J]. 中国地质调查,2022,9(1):1-15. TIAN Qianning,ZHANG Wei,WANG Haihua,et al. Nonnegligible new energy in the energy transition context:Natural hydrogen[J]. Geological Survey of China,2022,9(1):1-15.
[12] HOSGÖRMEZ H. Origin of the natural gas seep of Çirali(Chimera),Turkey:Site of the first Olympic fire[J]. Journal of Asian Earth Sciences,2007,30(1):131-141.
[13] HOSGÖRMEZ H,ETIOPE G,YALCIN M N. New evidence for a mixed inorganic and organic origin of the Olympic Chimaera fire(Turkey):A large onshore seepage of abiogenic gas[J]. Geofluids,2008,8(4):263-273.
[14] ABRAJANO T A,STURCHIO N C,BOHLKE J K,et al. Methanehydrogen gas seeps,Zambales ophiolite,Philippines:Deep or shallow origin?[J]. Chemical Geology,1988,71(1/2/3):211-222.
[15] ZGONNIK V. The occurrence and geoscience of natural hydrogen:A comprehensive review[J]. Earth-Science Reviews,2020, 203:1-51.
[16] MARTIN W F. Hydrogen,metals,bifurcating electrons,and proton gradients:The early evolution of biological energy conservation[J]. FEBS Letters,2012,586(5):485-493.
[17] PRINZHOFER A,CACAS-STENTZ M C. Natural hydrogen and blend gas:A dynamic model of accumulation[J]. International Journal of Hydrogen Energy,2023,48(57):21610-21623.
[18] NOBU M K,NAKAI R,TAMAZAWA S,et al. Unique H2-utilizing lithotrophy in serpentinite-hosted systems[J]. The ISME Journal,2023,17:95-104.
[19] SONG Han,OU Xinwen,HAN Bin,et al. An overlooked natural hydrogen evolution pathway:Ni2+ boosting H2O reduction by Fe(OH)2 oxidation during low:Temperature serpentinization[J]. Angewandte Chemie International Edition,2021,60(45):24054-24058.
[20] LEFEUVRE N,TRUCHE L,DONZÉ F,et al. Native H2 exploration in the western pyrenean foothills[J]. Geochemistry,Geophysics,Geosystems,2021,22(8):1-20.
[21] HALAS P,DUPUY A,FRANCESCHI M,et al. Hydrogen gas in circular depressions in South Gironde,France:Flux,stock, or artefact?[J]. Applied Geochemistry,2021,127:127-136.
[22] MURRAY J,CLÉMENT A,FRITZ B,et al. Abiotic hydrogen generation from biotite-rich granite:A case study of the Soultzsous-Forêts geothermal site,France[J]. Applied Geochemistry, 2020,119:104631.
[23] DILEK Y,FURNES H. Ophiolite genesis and global tectonics:Geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J]. Geological Society of America Bulletin,2011,123(3/4):387-411.
[24] NEAL C,STANGER G. Hydrogen generation from mantle source rocks in Oman[J]. Earth and Planetary Science Letters, 1983,66:315-320.
[25] BOULART C,CHAVAGNAC V,MONNIN C,et al. Differences in gas venting from ultramafic-hosted warm springs:The example of Oman and Voltri ophiolites[J]. Ofioliti,2013,38(2):143-156.
[26] TRUCHE L,MCCOLLOM T M,MARTINEZ I. Hydrogen and abiotic hydrocarbons:Molecules that change the world[J]. Elements,2020,16(1):13-18.
[27] VAUGHAN A P M,SCARROW J H. Ophiolite obduction pulses as a proxy indicator of superplume events?[J]. Earth and Plane-tary Science Letters,2003,213(3/4):407-416.
[28] CANNAT M,FONTAINE F,ESCARTÍN J. Serpentinization and associated hydrogen and methane fluxes at slow spreading ridges[M]//RONA P A,DEVEY C W,DYMENT J,et al. Geophysical monograph series:Volum 188. Washington D. C.:American Geophysical Union,2010:241-264.
[29] CHARLOU J L,DONVAL J P,FOUQUET Y,et al. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field(36°14' N,MAR)[J]. Chemical Geology,2002,191(4):345-359.
[30] MOORE B J,SIGLER S. Analyses of natural gases,1917-85[R]. U.S.Department of the Interior Bureau of Mines,1987.
[31] COVENEY R M J,GOEBEL E D,ZELLER E J,et al. Serpentinization and the origin of hydrogen gas in Kansas[J]. AAPG Bulletin,1987,71(1):39-48.
[32] Northwestern University. Geologists disprove theory about what stopped the formation of the Midcontinent rift[EB/OL]. https://phys.org/news/2017-12-geologists-theory-formation-mid-continent-rift.html, 2017-12-08.
[33] BELLEFROID E J,HOOD A V S,HOFFMAN P F,et al. Constraints on Paleoproterozoic atmospheric oxygen levels[J]. Proceedings of the National Academy of Sciences,2018,115(32):8104-8109.
[34] WANG Changle,LECHTE M A,REINHARD C T,et al. Strong evidence for a weakly oxygenated ocean:Atmosphere system during the Proterozoic[J]. Proceedings of the National Academy of Sciences,2022,119(6):e2116101119.
[35] 张连昌,翟明国,万渝生,等. 华北克拉通前寒武纪BIF铁矿研究:进展与问题[J]. 岩石学报,2012,28(11):3431-3445. ZHANG Lianchang,ZHAI Mingguo,WAN Yusheng,et al. Research on Precambrian BIF iron ore in north China:Progress and problems[J]. Acta Petrologica Sinica,2012,28(11):3431-3445.
[36] SHERWOOD L B,VOGLESONGER K,LIN L H,et al. Hydrogeologic controls on episodic H2 release from Precambrian fractured rocks:Energy for deep subsurface life on earth and mars[J]. Astrobiology,2007,7(6):971-986.
[37] NEWELL K D,DOVETON J H,MERRIAM D F,et al. H2-rich and hydrocarbon gas recovered in a deep Precambrian well in northeastern Kansas[J]. Natural Resources Research,2007, 16(3):277-292.
[38] GUÉLARD J,BEAUMONT V,ROUCHON V,et al. Natural H 2 in Kansas:Deep or shallow origin?[J]. Geochemistry,Geophysics,Geosystems,2017,18(5):1841-1865.
[39] PARNELL J,BLAMEY N. Global hydrogen reservoirs in basement and basins[J]. Geochemical Transactions,2017,18(1):41-49.
[40] PRINZHOFER A,TAHARA CISSÉ C S,DIALLO A B. Discovery of a large accumulation of natural hydrogen in Bourakebougou(Mali)[J]. International Journal of Hydrogen Energy, 2018,43(42):19315-19326.
[41] BRIERE D,JERZYKIEWICZ T. On generating a geological model for hydrogen gas in the southern Taoudeni Megabasin (Bourakebougou area,Mali)[M]//Barcelona:International Conference and Exhibition,2016.
[42] NIVIN V A. Occurrence forms,composition,distribution,origin and potential hazard of natural hydrogen-hydrocarbon gases in Ore Deposits of the Khibiny and Lovozero Massifs:A review[J]. Minerals,2019,9:535-563.
[43] WARD L K. Inflammable gases occuded in pre-Paleozoic rocks of South Australia[J]. Report of the Meeting of the Australian and New Zealand Association for the Advancement of Science, 1933:86-87.
[44] HANSON J,HANSON H. Hydrogen's organic genesis[J/OL]. Unconventional Resources,2023. https://linkinghub.elsevier.com/retrieve/pii/S2666519023000225.
[45] KLEIN F,TARNAS J D,BACH W. Abiotic sources of molecular hydrogen on earth[J]. Elements,2020,16(1):19-24.
[46] TIAN Qianning,YAO Shuqi,SHAO Mingjuan,et al. Origin, discovery,exploration and development status and prospect of global natural hydrogen under the background of "carbon neutrality"[J]. China Geology,2022,5(4):722-733.
[47] WANG Lu,JIN Zhijun,CHEN Xiao,et al. The origin and occurrence of natural hydrogen[J/OL]. Energies,2023,16(5):2400-2418.
[48] KLEIN F,GROZEVA N G,SEEWALD J S. Abiotic methane synthesis and serpentinization in olivine-hosted fluid inclusions[J]. Proceedings of the National Academy of Sciences,2019, 116(36):17666-17672.
[49] ALLEN D E,SEYFRIED W E. Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at midocean ridges:An experimental study at 400℃,500 bars[J]. Geochimica et Cosmochimica Acta,2003,67(8):1531-1542.
[50] KLEIN F,BACH W,JÖNS N,et al. Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15°N on the Mid-Atlantic Ridge[J]. Geochimica et Cosmochimica Acta,2009,73(22):6868-6893.
[51] BERNDT M E,ALLEN D E,SEYFRIED W E. Reduction of CO2 during serpentinization of olivine at 300℃ and 500 bar[J]. Geology,1996,24(4):351-354.
[52] MCCOLLOM T M,BACH W. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks[J]. Geochimica et Cosmochimica Acta,2009,73(3):856- 875.
[53] MILLER H M,MATTER J M,KELEMEN P,et al. Modern water/rock reactions in Oman hyperalkaline peridotite aquifers and implications for microbial habitability[J]. Geochimica et Cosmochimica Acta,2016,179:217-241.
[54] OKLAND I,HUANG S,DAHLE H,et al. Low temperature alteration of serpentinized ultramafic rock and implications for microbial life[J]. Chemical Geology,2012,(318/319):75-87.
[55] OKLAND I,HUANG S,THORSETH I H,et al. Formation of H 2,CH4 and N-species during low-temperature experimental alteration of ultramafic rocks[J]. Chemical Geology,2014,387:22-34.
[56] NEUBECK A,DUC N T,BASTVIKEN D,et al. Formation of H 2 and CH4 by weathering of olivine at temperatures between 30 and 70℃[J]. Geochemical Transactions,2011,12(1):12-18.
[57] TAKIA K,NAKAMURA K,TOKI T,et al. Cell proliferation at 122℃ and isotopically heavy CH4 production by a hyperther-mophilic methanogen under high-pressure cultivation[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(31):10949-10954.
[58] 黄瑞芳,孙卫东,丁兴,等. 橄榄岩蛇纹石化过程中氢气和烷烃的形成[J]. 岩石学报,2015,31(7):1901-1907. HUANG Ruifang,SUN Weidong,DING Xing,et al. Formation of hydrogen gas and alkane during peridotite serpentinization[J]. Acta Petrologica Sinica,2015,31(7):1901-1907.
[59] BERKNER L V,MARSHALL L C. History of major atmospheric components[J]. Proceedings of the National Academy of Sciences,1965,53(6):1215-1226.
[60] WALSHE J L,HOBBS B,ORD A,et al. Mineral systems,hydridic fluids,the Earth's core,mass extinction events and related phenomena[C]//MAO Jingwen,BIERLEIN F P. Mineral deposit research:Meeting the global challenge. Berlin,Heidelberg:Springer,2005:65-68.
[61] GILAT A L,VOL A. Degassing of primordial hydrogen and helium as the major energy source for internal terrestrial processes[J]. Geoscience Frontiers,2012,3(6):911-921.
[62] SMITH E M,SHIREY S B,NESTOLA F,et al. Large gem diamonds from metallic liquid in Earth's deep mantle[J]. Science, 2016,354(6318):1403-1405.
[63] YANG Xiaozhi,KEPPLER H,LI Yan. Molecular hydrogen in mantle minerals[J]. Geochemical Perspectives Letters,2016:160-168.
[64] FROST D J,MCCAMMON C A. The redox state of earth's mantle[J]. Annual Review of Earth and Planetary Sciences,2008, 36(1):389-420.
[65] WADHWA M. Redox conditions on small bodies,the moon and mars[J]. Reviews in Mineralogy and Geochemistry,2008, 68(1):493-510.
[66] BINDI L,CÁMARA F,GRIFFIN W L,et al. Discovery of the first natural hydride[J]. American Mineralogist,2019,104(4):611-614.
[67] MAO H K,HU Qingyang,YANG Liuxiang,et al. When water meets iron at Earth's coremantle boundary[J]. National Science Review,2017,4(6):870-878.
[68] TOULHOAT H,ZGONNIK V. Chemical differentiation of planets:A core issue[J]. The Astrophysical Journal,2022,924(2):83-101.
[69] WILLIAMS Q,HEMLEY R J. Hydrogen in the deep earth[J]. Annual Review of Earth and Planetary Sciences,2001,29(1):365-418.
[70] IKUTA D,OHTANI E,SANO-FURUKAWA A,et al. Interstitial hydrogen atoms in face-centered cubic iron in the Earth's core[J]. Scientific Reports,2019,9(1):7108-7116.
[71] GILAT A,VOL A. Primordial hydrogen-helium degassing,an overlooked major energy source for internal terrestrial processes[J]. HAIT Journal of Science and Engineering B,2005,2(1/2):125-167.
[72] CANFIELD D E,ROSING M T,BJERRUM C. Early anaerobic metabolisms[J]. Philosophical Transactions of the Royal Society B:Biological Sciences,2006,361(1474):1819-1836.
[73] SYMONDS R B,POREDA R J,EVANS W C,et al. Mantle and crustal sources of carbon,nitrogen,and noble gases in cascaderange and Aleutianarc volcanic gases[J]. Open-File Report, 2003,436:1-26.
[74] VOITOV G I,RUDAKOV V P. Hydrogen in the air of subsoil deposits:Its monitoring and application potential[J]. IzvestiyaPhysics of the Solid Earth,2000,36(6):511-518.
[75] BALLENTINE C J,O'NIONS R K,COLEMAN M L. A magnus opus:Helium,neon,and argon isotopes in a North Sea oilfield[J]. Geochimica et Cosmochimica Acta,1996,60(5):831-849.
[76] FINLAY A J,SELBY D,OSBORNE M J,et al. Fault-charged mantle-fluid contamination of United Kingdom North Sea oils:Insights from Re-Os isotopes:Figure 1[J]. Geology,2010,38(11):979-982.
[77] SMITH N J P. It's time for explorationists to take hydrogen more seriously[J]. First Break,2002,20(4):246-253.
[78] TRUCHE L,JOUBERT G,DARGENT M,et al. Clay minerals trap hydrogen in the Earth's crust:Evidence from the Cigar Lake uranium deposit,Athabasca[J]. Earth and Planetary Science Letters,2018,493:186-197.
[79] LIN L H,SLATER G F,SHERWOOD L B,et al. The yield and isotopic composition of radiolytic H2,a potential energy source for the deep subsurface biosphere[J]. Geochimica et Cosmochimica Acta,2005,69(4):893-903.
[80] WANG Wenqing,LIU Chiyang,ZHANG Dongdong,et al. Radioactive genesis of hydrogen gas under geological conditions:An experimental study[J]. Acta Geologica Sinica(English Edition),2019,93(4):341-350.
[81] DUBESSY J,PAGEL M,BENY J M,et al. Radiolysis evidenced by H2-O22-bearing fluid inclusions in three uranium deposits[J]. Geochimica et Cosmochimica Acta,1988,52(5):1155-1167.
[82] BACHAUD P,MEILLER C,BROSSE E,et al. Modeling of hydrogen genesis in ophiolite Massif[J]. Procedia Earth and Planetary Science,2017,17:265-268.
[83] MAIGA O,DEVILLE E,LAVAL J,et al. Trapping processes of large volumes of natural hydrogen in the subsurface:The emblematic case of the Bourakebougou H2 field in Mali[J]. International Journal of Hydrogen Energy,2023:S036031992305214 X.
[84] HAND E. Hidden hydrogen:Earth may hold vast stores of a renewable,carbon-free fuel[EB/OL]. https://www.science.org/content/article/hidden-hydrogen-earth-may-hold-vast-stores-renewable-carbon-free-fuel,2023-02-16.
[85] BOREHAM C J,SOHN J H,COX N,et al. Hydrogen and hydrocarbons associated with the Neoarchean Frog's Leg Gold Camp,Yilgarn Craton,western Australia[J]. Chemical Geology, 2021,575:120098.
[86] PADDISON L. They went hunting for fossil fuels. What they found could help save the world[EB/OL]//CNN. https://www.cnn.com/2023/10/29/climate/white-hydrogen-fossil-fuels-climate/index.html,2023-10-29.
[87] JIN Zhijun,WANG Lu. Does hydrogen reservoir exist in na-ture?[J]. Earth Science,2022,47(10):3858-3859.
[88] LÉVY D,BOKA-MENE M,MESHI A,et al. Looking for natural hydrogen in Albania and Kosova[J/OL]. Frontiers in Earth Science,2023,11:1167634.
[89] Natural Hydrogen Energy LLC. Natural hydrogen is a newly discovered geological source of sustainable and non-fossil energy[EB/OL]. http://nh2e.com/, 2020-11-01.
[90] Gold Hydrogen. Significant concentrations of hydrogen and helium detected in the Ramsay 1 Well[EB/OL]. https://www.goldhydrogen.com.au/asx-releases/significant-concentrations-ofhydrogen-and-helium-detected-in-the-ramsay-1-well/, 2023-10-31.
[91] FuelCellsWorks. Ascent hydrogen fund signs new deal with Spain's Helios Aragon to explore and produce'gold hydrogen'[EB/OL]. https://fuelcellsworks. com/news/ascent-hydrogenfund-signs-new-deal-with-spains-helios-aragon-to-explore-andproduce-gold-hydrogen/,2020-12-15.
[92] 45-8 Energy. Avant-Monts Franc-Comtois exploration license[EB/OL]. https://458energy.com/index.php/en/projects/avantmonts-franc-comtois-exploration-license.烃的形成[J]. 岩石学报,2015,31(7):1901-1907. HUANG Ruifang,SUN Weidong,DING Xing,et al. Formation of hydrogen gas and alkane during peridotite serpentinization[J]. Acta Petrologica Sinica,2015,31(7):1901-1907.
[59] BERKNER L V,MARSHALL L C. History of major atmospheric components[J]. Proceedings of the National Academy of Sciences,1965,53(6):1215-1226.
[60] WALSHE J L,HOBBS B,ORD A,et al. Mineral systems,hydridic fluids,the Earth's core,mass extinction events and related phenomena[C]//MAO Jingwen,BIERLEIN F P. Mineral deposit research:Meeting the global challenge. Berlin,Heidelberg:Springer,2005:65-68.
[61] GILAT A L,VOL A. Degassing of primordial hydrogen and helium as the major energy source for internal terrestrial processes[J]. Geoscience Frontiers,2012,3(6):911-921.
[62] SMITH E M,SHIREY S B,NESTOLA F,et al. Large gem diamonds from metallic liquid in Earth's deep mantle[J]. Science, 2016,354(6318):1403-1405.
[63] YANG Xiaozhi,KEPPLER H,LI Yan. Molecular hydrogen in mantle minerals[J]. Geochemical Perspectives Letters,2016:160-168.
[64] FROST D J,MCCAMMON C A. The redox state of earth's mantle[J]. Annual Review of Earth and Planetary Sciences,2008, 36(1):389-420.
[65] WADHWA M. Redox conditions on small bodies,the moon and mars[J]. Reviews in Mineralogy and Geochemistry,2008, 68(1):493-510.
[66] BINDI L,CÁMARA F,GRIFFIN W L,et al. Discovery of the first natural hydride[J]. American Mineralogist,2019,104(4):611-614.
[67] MAO H K,HU Qingyang,YANG Liuxiang,et al. When water meets iron at Earth's core-mantle boundary[J]. National Science Review,2017,4(6):870-878.
[68] TOULHOAT H,ZGONNIK V. Chemical differentiation of planets:A core issue[J]. The Astrophysical Journal,2022,924(2):83-101.
[69] WILLIAMS Q,HEMLEY R J. Hydrogen in the deep earth[J]. Annual Review of Earth and Planetary Sciences,2001,29(1):365-418.
[70] IKUTA D,OHTANI E,SANO-FURUKAWA A,et al. Interstitial hydrogen atoms in face-centered cubic iron in the Earth's core[J]. Scientific Reports,2019,9(1):7108-7116.
[71] GILAT A,VOL A. Primordial hydrogen-helium degassing,an overlooked major energy source for internal terrestrial processes[J]. HAIT Journal of Science and Engineering B,2005,2(1/2):125-167.
[72] CANFIELD D E,ROSING M T,BJERRUM C. Early anaerobic metabolisms[J]. Philosophical Transactions of the Royal Society B:Biological Sciences,2006,361(1474):1819-1836.
[73] SYMONDS R B,POREDA R J,EVANS W C,et al. Mantle and crustal sources of carbon,nitrogen,and noble gases in cascaderange and Aleutian -arc volcanic gases[J]. Open-File Report, 2003,436:1-26.
[74] VOITOV G I,RUDAKOV V P. Hydrogen in the air of subsoil deposits:Its monitoring and application potential[J]. IzvestiyaPhysics of the Solid Earth,2000,36(6):511-518.
[75] BALLENTINE C J,O'NIONS R K,COLEMAN M L. A magnus opus:Helium,neon,and argon isotopes in a North Sea oilfield[J]. Geochimica et Cosmochimica Acta,1996,60(5):831-849.
[76] FINLAY A J,SELBY D,OSBORNE M J,et al. Fault-charged mantle-fluid contamination of United Kingdom North Sea oils:Insights from Re-Os isotopes:Figure 1[J]. Geology,2010,38(11):979-982.
[77] SMITH N J P. It's time for explorationists to take hydrogen more seriously[J]. First Break,2002,20(4):246-253.
[78] TRUCHE L,JOUBERT G,DARGENT M,et al. Clay minerals trap hydrogen in the Earth's crust:Evidence from the Cigar Lake uranium deposit,Athabasca[J]. Earth and Planetary Science Letters,2018,493:186-197.
[79] LIN L H,SLATER G F,SHERWOOD L B,et al. The yield and isotopic composition of radiolytic H2,a potential energy source for the deep subsurface biosphere[J]. Geochimica et Cosmochimica Acta,2005,69(4):893-903.
[80] WANG Wenqing,LIU Chiyang,ZHANG Dongdong,et al. Radioactive genesis of hydrogen gas under geological conditions:An experimental study[J]. Acta Geologica Sinica(English Edition),2019,93(4):341-350.
[81] DUBESSY J,PAGEL M,BENY J M,et al. Radiolysis evidenced by H2-O2 and H2-bearing fluid inclusions in three uranium deposits[J]. Geochimica et Cosmochimica Acta,1988,52(5):1155-1167.
[82] BACHAUD P,MEILLER C,BROSSE E,et al. Modeling of hydrogen genesis in ophiolite Massif[J]. Procedia Earth and Planetary Science,2017,17:265-268.
[83] MAIGA O,DEVILLE E,LAVAL J,et al. Trapping processes of large volumes of natural hydrogen in the subsurface:The emblematic case of the Bourakebougou H2 field in Mali[J]. International Journal of Hydrogen Energy,2023:S036031992305214 X.
[84] HAND E. Hidden hydrogen:Earth may hold vast stores of a renewable,carbon-free fuel[EB/OL]. https://www.science.org/content/article/hidden-hydrogen-earth-may-hold-vast-stores-renewable-carbon-free-fuel, 2023-02-16.
[85] BOREHAM C J,SOHN J H,COX N,et al. Hydrogen and hydrocarbons associated with the Neoarchean Frog's Leg Gold Camp,Yilgarn Craton,western Australia[J]. Chemical Geology, 2021,575:120098.
[86] PADDISON L. They went hunting for fossil fuels. What they found could help save the world[EB/OL]//CNN. https://www.cnn.com/2023/10/29/climate/white-hydrogen-fossil-fuels-climate/index.html, 2023-10-29.
[87] JIN Zhijun,WANG Lu. Does hydrogen reservoir exist in nature?[J]. Earth Science,2022,47(10):3858-3859.
[88] LÉVY D,BOKA-MENE M,MESHI A,et al. Looking for natural hydrogen in Albania and Kosova[J/OL]. Frontiers in Earth Science,2023,11:1167634.
[89] Natural Hydrogen Energy LLC. Natural hydrogen is a newly discovered geological source of sustainable and non-fossil energy[EB/OL]. http://nh2e.com/, 2020-11-01.
[90] Gold Hydrogen. Significant concentrations of hydrogen and helium detected in the Ramsay 1 Well[EB/OL]. https://www.goldhydrogen.com.au/asx-releases/significant-concentrations-ofhydrogen-and-helium-detected-in-the-ramsay-1-well/, 2023-10-31.
[91] FuelCellsWorks. Ascent hydrogen fund signs new deal with Spain's Helios Aragon to explore and produce'gold hydrogen'[EB/OL]. https://fuelcellsworks. com/news/ascent-hydrogenfund-signs-new-deal-with-spains-helios-aragon-to-explore-and-produce-gold-hydrogen/,2020-12-15.
[92] 45-8 Energy. Avant-Monts Franc-Comtois exploration license[EB/OL]. https://458energy.com/index.php/en/projects/avantmonts-franc-comtois-exploration-license.
[93] MAIGA O,DEVILLE E,LAVAL J,et al. Characterization of the spontaneously recharging natural hydrogen reservoirs of Bourakebougou in Mali[J]. Scientific Reports,2023,13(1):11876.
[94] BARATOUX L,METELKA V,NABA S,et al. Juvenile Paleo-proterozoic crust evolution during the Eburnean orogeny(~2.2-2.0 Ga),western Burkina Faso[J]. Precambrian Research,2011,191(1/2):18-45.
[95] ANGINO E E,ZELLER E J,DRESCHHOFF G A M,et al.Spatial distribution of hydrogen in soil gas in central Kansas,U.S.A[C]//DURRANCE E M. Geochemistry of gaseous elements and compounds. Athens:Theophrastus Publications,1990:485-493.
[96] JOHNSGARD S K. The fracture pattern of north-central Kansas and its relation to hydrogen soil gas anomalies over the midcontinent rift system[D]. Kansas:University of Kansas,1988.
[97] HyTerra. Natural hydrogen exploration & production[EB/OL].https://hyterra.com/home/#projects, 2023-10-25.
[98] Gold Hydrogen. Ramsay project[EB/OL]. https://www.goldhydrogen.com.au/ramsay-project/, 2022-08-31.
[99] STALKER L,TALUKDER A,STRAND J,et al. Gold(hydrogen)rush:Risks and uncertainties in exploring for naturally occurring hydrogen[J]. The APPEA Journal,2022,62(1):361-380.
[100]黄汲清. 中国地质构造基本特征的初步总结[J]. 地质学报,1960(1):1-31.HUANG Jiqing,A preliminary summary of the basic featuresof Chinese geological formations[J]. Acta Geologica Sinica,1960(1):1-31.
[101]SHUAI Yanhua,ZHANG Shuichang,SU Aiguo,et al. Geochemical evidence for strong ongoing methanogenesis in Sanhu region of Qaidam Basin[J]. Science China:Earth Sciences,2010,53(1):84-90.
[102]HAN Shuangbiao,TANG Zhiyuan,WANG Chengshan,et al.Hydrogen-rich gas discovery in continental scientific drilling project of Songliao Basin,Northeast China:New insights into deep Earth exploration[J]. Science Bulletin,2022,67(10):1003-1006.
[103]WANG Lu,JIN Zhijun,LIU Quanyou,et al. The occurrence pattern of natural hydrogen in the Songliao Basin,P.R. China:Insights on natural hydrogen exploration[J]. International Journal of Hydrogen Energy,2023:S0360319923042908.
[104]朱光,刘程,顾承串,等. 郯庐断裂带晚中生代演化对西太平洋俯冲历史的指示[J]. 中国科学:地球科学,2018,48(4):415-435.ZHU Guang,LIU Cheng,GU Chengchuan,et al. Oceanic plate subduction history in the western Pacific Ocean:Constraint from late Mesozoic evolution of the Tan-Lu fault zone[J]. Scientia Sinica(Terrae),2018,48(4):415-435.
[105]疏鹏,徐锡伟,酆少英,等. 板泉拉分盆地沉积构造演化及其对郯庐断裂带新生代晚期右旋走滑运动的响应[J]. 中国科学:地球科学,2023,53(4):784-805.SHU Peng,XU Xiwei,FENG Shaoying,et al. Sedimentary and tectonic evolution of the Banquan pull-apart basin and implications for late Cenozoic dextral strike-slip movement of the Tanlu Fault Zone[J]. Scientia Sinica(Terrae),2023,53(4):784-805.
[106]HAO Yinlei,PANG Zhonghe,TIAN Jiao,et al. Origin and evolution of hydrogen-rich gas discharges from a hot spring in the eastern coastal area of China[J]. Chemical Geology,2020,538:119477.
[107]金之钧,杨雷,曾溅辉,等. 东营凹陷深部流体活动及其生烃效应初探[J]. 石油勘探与开发,2002,29(2):42-44.JIN Zhijun,YANG Lei,ZENG Jianhui,et al. Deep fluid activties and their effects on generation of hydrocarbon in Dongying Depression[J]. Petroleum Exploration and Development,2002,29(2):42-44.
[108]张水昌,朱光有,陈建平等. 四川盆地川东北部飞仙关组高含硫化氢大型气田群气源探讨[J]. 科学通报,2007,52(增刊1):86-94.ZHANG Shuichang,ZHU Guangyou,CHEN Jianping,et al.The discussion on gas source of gas field group with high H2S content in Feixianguan formation,northeastern Sichuan Basin[J]. Chinese Science Bulletin,2007,52(Suppl 1):86-94.
[109]徐义刚,何斌,罗震宇,等. 我国大火成岩省和地幔柱研究进展与展望[J]. 矿物岩石地球化学通报,2013,32(1):25-39.XU Yigang,HE Bin,LUO Zhenyu,et al. Study on mantle plume and large igneous provinces in China:An overview and perspectives[J]. Bulletin of Mineralogy,Petrology and Geochemi-stry,2013,32(1):25-39.
[110] 上官志冠,白春华,孙明良. 腾冲热海地区现代幔源岩浆气体释放特征[J]. 中国科学:D辑,2000,30(4):407-414.SHANGGUAN Zhiguan,BAI Chunhua,SUN Mingliang. Modern mantle-derived magma gas release characteristics in the Rehai area of Tengchong[J]. Scientia Sinica,2000,30(4):407-414.
[111] 尹福光,潘桂棠,孙志明. 西南三江构造体系及演化、成因[J]. 沉积与特提斯地质,2021,41(2):265-282.YIN Fuguang,PAN Guitang,SUN Zhiming. Genesis and evolution of the structural systems during the cenozoic in the Sanji-ang orogenic belt,southwest China[J]. Sedimentary Geology andTethyan Geology,2021,41(2):265-282.
[112] 林良彪,蔺宏斌,侯明才,等. 鄂尔多斯盆地苏里格气田上古生界天然气地球化学及成藏特征[J]. 沉积与特提斯地质,2009,29(2):77-82.LIN Liangbiao,LIN Hongbin,HOU Mingcai,et al. Geochemis-try and accumulation of the Upper Palaeozoic natural gas in the Sulige gas field,Ordos Basin[J]. Sedimentary Geology and Tethyan Geology,2009,29(2):77-82.
[113] 余川. 川东南地区下志留统页岩气成藏条件及资源潜力分析[D]. 成都:西南石油大学,2012.YU Chuan. Analysis on accumulation conditions and resource potential of lower Silurian shale gas in southeastern Sichuan[D]. Chengdu:Southwest Petroleum University,2012.
[114] 高清武. 长白山天池火山水热活动及气体释放特征[J]. 地球学报,2004,25(3):345-350.GAO Qingwu. Volcanic hydrothermal activities and gasreleas-ing characteristics of the Tianchi Lake Region,Chanbai Mountains[J]. Acta Geoscientica Sinica,2004,25(3):345-350.
[115] 李秀梅,刘映辉,温景萍. 楚雄盆地乌龙1井天然气的地球化学特征和地质意义[J]. 天然气工业,2002,22(5):16-19.LI Xiumei,LIU Yinghui,WEN Jingping. Geochemical characteristics of the natural gas from well Wulong-1,Chuxiong basin,and its geological significance[J].Natural Gas Industry,2002,22(5):16-19.
[116] 秦川,余谦,刘伟,等. 黔北地区牛蹄塘组富有机质泥岩储层特征[J]. 西南石油大学学报(自然科学版),2017,39(4):13-24.QIN Chuan,YU Qian,LIU Wei,et al.Reservoir characteristicsof organic-rich mudstone of Niutitang Formation in northern Guizhou[J]. Journal of Southwest Petroleum University(Science & Technology Edition),2017,39(4):13-24.
[1] 马峰, 庞文珠, 赵文光, 张斌, 赵艳军, 薛罗, 郑茜, 陈彬滔. 南苏丹境内裂谷盆地源上构造-岩性油藏成藏主控因素与成藏模式[J]. 岩性油气藏, 2023, 35(6): 92-105.
[2] 李恒萱, 温志新, 宋成鹏, 刘祚冬, 季天愚, 沈一平, 耿珂. 塞内加尔盆地演化过程与岩性油气藏勘探前景[J]. 岩性油气藏, 2023, 35(6): 45-53.
[3] 窦立荣, 李志, 杨紫, 张兴阳, 康海亮, 张明军, 张良杰, 丁梁波. 中国石油海外岩性地层油气藏勘探进展与前景展望[J]. 岩性油气藏, 2023, 35(6): 1-9.
[4] 杨希濮, 杨小丽, 刘钧, 房磊, 邹婧芸. 一体化储层精细分类方法在非均质储层定量表征中的应用[J]. 岩性油气藏, 2017, 29(1): 124-129.
[5] 韩立国. 济阳坳陷构造体制转换与郯庐断裂带的关系探讨[J]. 岩性油气藏, 2009, 21(1): 72-74.
[6] 邸领军, 谢广成. 对贺兰拗拉槽的质疑[J]. 岩性油气藏, 2008, 20(2): 16-21.
[7] 罗志立,张景廉,石兰亭. “塔里木—扬子古大陆”重建对无机成因油气的作用[J]. 岩性油气藏, 2008, 20(1): 124-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!