岩性油气藏 ›› 2017, Vol. 29 ›› Issue (6): 23–31.doi: 10.3969/j.issn.1673-8926.2017.06.004

• 油气地质 • 上一篇    下一篇

油页岩生排烃模拟实验中不同液态烃产物特征

孙丽娜1, 张明峰2,3, 吴陈君2,3, 王自翔4, 妥进才2,3   

  1. 1. 非常规油气湖北省协同创新中心(长江大学), 武汉 430100;
    2. 甘肃省油气资源研究重点实验室, 兰州 730000;
    3. 中国科学院油气资源研究重点实验室, 兰州 730000;
    4. 中国石化江汉油田分公司 勘探开发研究院, 武汉 430223
  • 收稿日期:2017-04-23 修回日期:2017-06-19 出版日期:2017-11-21 发布日期:2017-11-21
  • 第一作者:孙丽娜(1989-),女,博士,讲师,主要从事石油与天然气地球化学方面的教学和科研工作。地址:(430100)湖北省武汉市蔡甸区蔡甸街大学路111号。电话:(027)69111832。Email:slina1029@163.com
  • 通信作者: 妥进才(1962-),男,博士,研究员,主要从事有机地球化学和石油地质学方面的科研工作。Email:jctuo@lzb.ac.cn
  • 基金资助:
    国家重点基础研究发展计划"致密油(页岩油)储集空间定量表征"(编号:2014CB239004)及长江大学青年科研支持计划基金"中扬子地区海相页岩吸附气量定量评价体系研究"(编号:7013302105)联合资助

Features of liquid hydrocarbon in different states in oil shale during hydrous pyrolysis

SUN Lina1, ZHANG Mingfeng2,3, WU Chenjun2,3, WANG Zixiang4, TUO Jincai2,3   

  1. 1. Hubei Cooperative Innovation Center of Unconventional Oil and Gas, Yangtze University, Wuhan 430100, China;
    2. Key Laboratory of Petroleum Resources Research, Gansu Province, Lanzhou 730000, China;
    3. Key Laboratory of Petroleum Resources Research, Chinese Academy of Sciences, Lanzhou 730000, China;
    4. Research Institute of Exploration and Development, Sinopec Jianghan Oilfield Company, Wuhan 430223, China
  • Received:2017-04-23 Revised:2017-06-19 Online:2017-11-21 Published:2017-11-21

摘要: 为了探究油页岩生排烃模拟实验中不同液态烃产物的组成及变化特征,利用WYMN-3型高温高压模拟仪分别对鄂尔多斯盆地延长组长7油层组和准噶尔盆地芦草沟组油页岩样品在250℃,300℃,350℃,375℃,400℃,450℃和500℃共7个温度条件下进行了半开放体系生排烃模拟实验。通过对比与分析排出油、洗出油和残留油等3种液态烃产物的生成特征及族组分组成,结果发现:2个样品中排出油均是影响总油变化的重要因素,均随温度呈基本不变→升高至最大值→下降的3段式变化趋势;洗出油和残留油的变化趋势相同,均表现为基本不变→升高至最大值再下降至最低值→基本不变的变化趋势。从3种液态烃产率的变化趋势可以明显地将有机质热演化划分为可溶有机质生油气、干酪根热裂解生油气和油裂解生气等3个阶段。就排出油、洗出油和残留油的关系而言:洗出油为排出油和残留油的"过渡"产物;排出油产率峰值对应的温度高于洗出油峰值对应的温度,残留油产率峰值对应的温度一直为350℃,所以排出油经过初次运移后会在烃源岩表面滞留一段时间后再发生二次运移,而残留油峰值则出现在"生油窗"初期阶段的温度点上。微观上,排出油和残留油族组分中,高含量的饱和烃、芳烃组分是总有机碳含量更高的重要依据,也是生烃产率更高的重要影响因素。由此可见,通过研究排出油、洗出油和残留油的产率和族组分特征,可为进一步探讨地质演化过程中液态烃的演化阶段和状态提供理论依据。

关键词: 绿泥石膜, 生长模式, 原生粒间孔隙, 长8砂岩, 鄂尔多斯盆地

Abstract: In order to understand the components and change features of liquid hydrocarbons in different states, a series of simulation experiments were conducted on source rocks using WYMN-3 high temperature and pressure simulator. These pyrolysis experiments were conducted on the columned oil-shales samples from Yanchang Formation in Ordos Basin and Lucaogou Formation in Junggar Basin under semi-open system,and the temperatures were set on 250℃, 300℃, 350℃, 375℃, 400℃, 450℃ and 500℃. The hydrodynamic pressures were all carried on 50 MPa,and the experiments were all kept on the target temperatures for 48 hours. The liquid hydrocarbons products were separated into expelled oil,wash-out oil and residual oil,and the sum of the three components was defined as total oil. Based on the analysis about the features of expelled,wash-out,residual and total oil,what we have found were listed as below:(1)with the temperature increasing,the tendency of expelled oil and total oil is the same,which shows the importance of expelled oil for the yields of total oil; (2)the trend of wash-out and residual oils with different temperatures is the same, which could be related to the evolution of organic matters; (3)from the changing stages of expelled,wash-out and residual oils,the three thermal evolution stages are the thermal cracking of soluble organic matter in original source rocks,the thermal cracking of kerogens,and the second cracking of oil to gases; (4)the stages of expelled oil are always later than washout oil, which indicates that the expelled oil would be retained on the surface of source rocks before the second migration; (5)the maximum yields of residual oil are occurred at 350℃ in both samples,thus the beginning of oil generation window is the maximum point of residual oil; (6)the higher total organic carbon content may be resulted in the higher generation of hydrocarbons during thermal evolution, and the higher contents of saturated hydrocarbons and aromatic hydrocarbons could be also resulted in the higher yields of hydrocarbons. Therefore, these researches could provide some theoretical foundations for the studies of liquid hydrocarbons evolution.

Key words: chlorite film, growth pattern, primary intergranular pore, Chang 8 sandstone, Ordos Basin

中图分类号: 

  • TE122.1+13
[1] PRICE L C, WENGER L M. The influence of pressure on petroleum generation and maturation as suggested by aqueous pyrolysis. Advances in Organic Geochemistry, 1992, 19(1/3):141-159.
[2] SCHENK H J, HORSFIELD B. Kinetics of petroleum generation by programmed-temperature closed-versus open-system pyrolysis. Geochimica et Cosmochimica Acta, 1993, 57(3):623-630.
[3] BEHAR F, LEWAN M D, LORANT F, et al. Comparison of artificial maturation of lignite in hydrous and nonhydrous conditions. Organic Geochemistry, 2003, 34:575-600.
[4] BEHAR F, KRESSMANN S, RUDKIEWICZ J L, et al. Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking. Advances in Organic Geochemistry, 1992, 19(1/3):173-189.
[5] LEWAN M D. Experiments on the role of water in petroleum formation. Geochimica et Cosmochimica Acta, 1997, 61(17):3691-3723.
[6] DIECKMANN V, SCHENK H J, HORSFIELD B. Assessing the overlap of primary and secondary reactions by closed-versus open-system pyrolysis of marine kerogens. Journal of Analytical and Applied Pyrolysis, 2000, 56(1):33-46.
[7] KUILA U, MCCARTY D K, DERKOWSKI A, et al. Nano-scale texture and porosity of organic matter and clay minerals in organicrich mudrocks. Fuel, 2014, 135:359-373.
[8] SUN L N, TUO J C, ZHANG M F, et al. Formation and development of the pore structure in Chang 7 member oil-shale from Ordos Basin during organic matter evolution induced by hydrous pyrolysis. Fuel, 2015, 158:549-557.
[9] ROMERO-SARMIENTO M-F, ROUZAUD J-N, BERNARD S, et al. Evolution of Barnett shale organic carbon structure and nanostructure with increasing maturation. Organic Geochemistry, 2014, 71:7-16.
[10] 刘全有, 刘文汇, 陈践发, 等.塔里木盆地煤系有机质热模拟实验中液态烃特征研究.天然气地球科学, 2004, 15(4):355-359. LIU Q Y, LIU W H, CHEN J F, et al. Characteristics of liquid hydrocarbon in thermal pyrolysis experiment for coal of Tarim Basin, China. Natural Gas Geoscience, 2004, 15(4):355-359.
[11] TANG X, ZHANG J C, JIANG Z X, et al. Characteristics of solid residue, expelled and retained hydrocarbons of lacustrine marlstone based on semi-closed system hydrous pyrolysis:implications for tight oil exploration. Fuel, 2015, 162:186-193.
[12] FRANCO N, KALKREUTH W, PERLBA M D C R. Geochemical characterization of solid residues, bitumen and expelled oil based on steam pyrolysis experiments from Irati oil shale, Brazil:a preliminary study. Fuel, 2010, 89:1863-1871.
[13] UGUNA C N, CARR R D, SNAPE C E, et al. High-pressure water pyrolysis of coal to evaluate the role of pressure on hydrocarbon generation and source rock maturation at high maturities under geological conditions. Organic Geochemistry, 2015, 78:44-51.
[14] 吉鸿杰, 邱振, 陶辉飞, 等. 烃源岩特征与生烃动力学研究——以准噶尔盆地吉木萨尔凹陷芦草沟组为例. 岩性油气藏, 2016, 28(4):34-42. JI H J, QIU Z, TAO H F, et al. Source rock characteristics and hydrocarbon generation kinetics:a case study of the Permian Lucaogou Formation in Jimsar Sag, Junggar Basin. Lithologic Reservoirs, 2016, 28(4):34-42.
[15] 付德亮, 周世新, 马瑜, 等.煤系有机质演化过程中CO2对流体密度的影响.岩性油气藏, 2016, 28(2):41-46. FU D L, ZHOU S X, MA Y, et al. Impacts of CO2 on fluid density during the evolution of organic material of coal series. Lithologic Reservoirs, 2016, 28(2):41-46.
[16] 张辉, 彭平安.开放体系下干酪根生烃动力学研究.西南石油大学学报(自然科学版), 2008, 30(6):18-21. ZHANG H, PENG P A. Kinetics study on hydrocarbon generation of kerogen in open system. Journal of Southwest Petroleum University(Science & Technology Edition), 2008, 30(6):18-21.
[17] 王治朝, 米敬奎, 李贤庆, 等.生烃模拟实验方法现状与存在问题.天然气地球科学, 2009, 20(4):592-597. WANG Z C, MI J K, LI X Q, et al. Current situation and problems of simulation experiment approach of hydrocarbon generation. Natural Gas Geoscience, 2009, 20(4):592-597.
[18] 汤庆艳, 张铭杰, 张同伟, 等.生烃热模拟实验方法述评.西南石油大学学报(自然科学版), 2013, 35(1):52-62. TANG Q Y, ZHANG M J, ZHANG T W, et al. A review on pyrolysis experimentation on hydrocarbon generation. Journal of Southwest Petroleum University(Science & Technology Edition), 2013, 35(1):52-62.
[19] 李慧莉, 金之钧, 何治亮, 等.海相烃源岩二次生烃热模拟实验研究.科学通报, 2007, 52(11):1322-1328.LI H L, JIN Z J, HE Z L, et al. The thermal modelling of secondary hydrocarbon generation for marine souse rocks. Chinese Science Bulletin, 2007, 52(11):1322-1328.
[20] GAO L, SCHIMMELMANN A, TANG Y C, et al. Isotope rollover in shale gas observed in laboratory pyrolysis experiments:insight to the role of water in thermogenesis of mature gas. Organic Geochemistry, 2014, 68:95-106.
[21] 米敬奎, 张水昌, 王晓梅.不同类型生烃模拟实验方法对比与关键技术.石油实验地质, 2009, 31(4):409-414. MI J K, ZHANG S C, WANG X M. Comparion of different hydrocarbon generation simulation approaches and key technique. Petroleum Geology & Experiment, 2009, 31(4):409-414.
[22] 郑伦举, 何生, 秦建中, 等.近临界特性的地层水及其对烃源岩生排烃过程的影响.地球科学:中国地质大学学报, 2011, 36(1):83-92. ZHENG L J, HE S, QIN J Z, et al. Formation water of near-critical properties and its effects on the processes of hydrocarbon generation and expulsion. Earth Science-Journal of China University of Geosciences, 2011, 36(1):83-92.
[23] 李志明, 郑伦举, 马中良, 等.烃源岩有限空间油气生排烃模拟及其意义.石油实验地质, 2011, 33(5):447-451. LI Z M, ZHENG L J, MA Z L, et al. Simulation of source rock for hydrocarbon generation and expulsion in finite space and its significance. Petroleum Geology & Experiment, 2011, 33(5):447-451.
[24] 郑伦举, 秦建中, 何生, 等.地层孔隙热压生排烃模拟实验初步研究.石油实验地质, 2009, 31(3):296-302. ZHENG L J, QIN J Z, HE S, et al. Preliminary study of formation porosity thermocompression simulation experiment of hydrocarbon generation and expulsion. Petroleum Geology & Experiment, 2009, 31(3):296-302.
[25] 孙丽娜, 张中宁, 吴远东, 等. 半开放体系下温压对烃源岩HTHP模拟产物产率的影响.天然气地球科学, 2015, 26(1):119. SUN L N, ZHANG Z N, WU Y D, et al. Effect of temperature and pressure on hydrocarbon yield of source rock HTHP simulation experiment in semi-open system. Natural Gas Geoscience, 2015, 26(1):119.
[26] SWEENEY J J, BURNHAM A K. Evaluation of a simple model of vitrinite reflectance based on Chemical kinetics. AAPG Bulletin, 1990, 74(10):1559-1570.
[27] SUZUKI N, MATSUBAYASHI H, WAPLES D W. A simpler kinetic model of vitrinite reflectance. AAPG Bulletin, 1993, 77(9):1502-1508.
[28] 苏玉平, 付晓飞, 卢双舫, 等. EASY% Ro法在滨北地区热演化史中的应用.大庆石油学院学报, 2006, 30(2):5-8. SU Y P, FU X F, LU S F, et al. Application of EASY% Ro model to the research of thermal evolution in Binbei. Journal of Daqing Petroleum Institute, 2006, 30(2):5-8.
[29] 申家年, 杨晨, 于勇.EASY% Ro法在地温梯度恢复中的局限性——以海拉尔盆地乌尔逊凹陷为例.吉林大学学报(地球科学版), 2012, 42(增刊2):148-154. SHEN J N, YANG C, YU Y. The limitations of EASY% Ro in geothermal gradient inversion:a case study of Wurxun Depression in Hailaer Basin. Journal of Jilin University(Earth Science Edition), 2012, 42(Suppl 2):148-154.
[30] JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems:the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 2007, 91(4):489.
[31] 杨燕, 雷天柱, 关宝文, 等.滨浅湖相泥质烃源岩中不同赋存状态可溶有机质差异性研究.岩性油气藏, 2015, 27(2):78. YANG Y, LEI T Z, GUAN B W, et al. Differences of solvable organic matters with different occurrence states in argillaceous source rocks of coastal shallow-lake facie. Lithologic Reservoirs, 2015, 27(2):78.
[32] 刘文汇, 张建勇, 范明, 等.叠合盆地天然气的重要来源——分散可溶有机质.石油实验地质, 2007, 29(1):2. LIU W H, ZHANG J Y, FAN M, et al. Gas generation character of dissipated soluble organic matter. Petroleum Geology & Experiment, 2007, 29(1):2.
[33] 郑伦举, 王强, 秦建中, 等. 海相古油藏及可溶有机质再生烃气能力研究.石油实验地质, 2008, 30(4):390-395. ZHENG L J, WANG Q, QIN J Z, et al. Hydrocarbon-regeneration capability of marine Paleo-reservoir and soluble organic matter. Petroleum Geology & Experiment, 2008, 30(4):390-395.
[34] TISSOT B P, WELTE D H. Petroleum formation and occurrence:a new approach to oil and gas exploration. Berlin:Springer-Verlag, 1978.
[35] PEPPER A S, CORVIL P J. Simple kinetic models of petroleum formation. Part I:oil and gas generation from kerogen. Marine and Petroleum Geology, 1995, 12(3):291-319.
[36] PEPPER A S, DODD T A. Simple kinetic models of petroleum formation. Part Ⅱ:oil-gas cracking. Marine and Petroleum Geology, 1995, 12(3):321-340.
[37] 孟仟祥, 孙敏卓, 房嬛, 等.盐湖相低演化烃源岩的生烃机理及生物标志物演化特征——沥青"A"热模拟. 沉积学报, 2007, 25(5):800-807. MENG Q X, SUN M Z, FANG X, et al. Hydrocarbon generation mechanism and evolution characteristics of biomarkers on lowevolutionary source rocks of the salt lacustrine facies. Acta Sedimentologica Sinica, 2007, 25(5):800-807.
[1] 关蕴文, 苏思羽, 蒲仁海, 王启超, 闫肃杰, 张仲培, 陈硕, 梁东歌. 鄂尔多斯盆地南部旬宜地区古生界天然气成藏条件及主控因素[J]. 岩性油气藏, 2024, 36(6): 77-88.
[2] 王子昕, 柳广弟, 袁光杰, 杨恒林, 付利, 王元, 陈刚, 张恒. 鄂尔多斯盆地庆城地区三叠系长7段烃源岩特征及控藏作用[J]. 岩性油气藏, 2024, 36(5): 133-144.
[3] 尹虎, 屈红军, 孙晓晗, 杨博, 张磊岗, 朱荣幸. 鄂尔多斯盆地东南部三叠系长7油层组深水沉积特征及演化规律[J]. 岩性油气藏, 2024, 36(5): 145-155.
[4] 牟蜚声, 尹相东, 胡琮, 张海峰, 陈世加, 代林锋, 陆奕帆. 鄂尔多斯盆地陕北地区三叠系长7段致密油分布特征及控制因素[J]. 岩性油气藏, 2024, 36(4): 71-84.
[5] 段逸飞, 赵卫卫, 杨天祥, 李富康, 李慧, 王嘉楠, 刘钰晨. 鄂尔多斯盆地延安地区二叠系山西组页岩气源储特征及聚集规律[J]. 岩性油气藏, 2024, 36(3): 72-83.
[6] 王宏波, 张雷, 曹茜, 张建伍, 潘星. 鄂尔多斯盆地二叠系盒8段河流扇沉积模式及勘探意义[J]. 岩性油气藏, 2024, 36(3): 117-126.
[7] 曹江骏, 王茜, 王刘伟, 李诚, 石坚, 陈朝兵. 鄂尔多斯盆地合水地区三叠系长7段夹层型页岩油储层特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 158-171.
[8] 李启晖, 任大忠, 甯波, 孙振, 李天, 万慈眩, 杨甫, 张世铭. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2): 76-88.
[9] 雷涛, 莫松宇, 李晓慧, 姜楠, 朱朝彬, 王桥, 瞿雪姣, 王佳. 鄂尔多斯盆地大牛地气田二叠系山西组砂体叠置模式及油气开发意义[J]. 岩性油气藏, 2024, 36(2): 147-159.
[10] 翟咏荷, 何登发, 开百泽. 鄂尔多斯盆地及邻区中—晚二叠世构造-沉积环境与原型盆地演化[J]. 岩性油气藏, 2024, 36(1): 32-44.
[11] 龙盛芳, 侯云超, 杨超, 郭懿萱, 张杰, 曾亚丽, 高楠, 李尚洪. 鄂尔多斯盆地西南部庆城地区三叠系长7段—长3段层序地层特征及演化规律[J]. 岩性油气藏, 2024, 36(1): 145-156.
[12] 杜江民, 崔子豪, 贾志伟, 张毅, 聂万才, 龙鹏宇, 刘泊远. 鄂尔多斯盆地苏里格地区奥陶系马家沟组马五5亚段沉积特征[J]. 岩性油气藏, 2023, 35(5): 37-48.
[13] 魏嘉怡, 王红伟, 刘刚, 李涵, 曹茜. 鄂尔多斯盆地西缘冲断带石炭系羊虎沟组沉积特征[J]. 岩性油气藏, 2023, 35(5): 120-130.
[14] 尹艳树, 丁文刚, 安小平, 徐振华. 鄂尔多斯盆地安塞油田塞160井区三叠系长611储层构型表征[J]. 岩性油气藏, 2023, 35(4): 37-49.
[15] 薛楠, 邵晓州, 朱光有, 张文选, 齐亚林, 张晓磊, 欧阳思琪, 王淑敏. 鄂尔多斯盆地平凉北地区三叠系长7段烃源岩地球化学特征及形成环境[J]. 岩性油气藏, 2023, 35(3): 51-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .