岩性油气藏 ›› 2025, Vol. 37 ›› Issue (3): 176–184.doi: 10.12108/yxyqc.20250316

• 地质勘探 • 上一篇    

灰岩倾斜微裂缝对横波衰减影响的实验

周庆文1,2, 伍东3, 蔡明1,2, 章成广1,2, 陈渊博4, 林旺3, 张远君1,2, 李治1,2   

  1. 1. 油气资源与勘探技术教育部重点实验室(长江大学), 武汉 430100;
    2. 长江大学 地球物理与石油资源学院, 武汉 430100;
    3. 中国石油集团工程技术研究院有限公司 信息中心, 北京 102206;
    4. 中国石化西北油田分公司 采油一厂, 新疆 轮台 841604
  • 收稿日期:2024-07-23 修回日期:2024-09-04 发布日期:2025-05-10
  • 第一作者:周庆文(1999—),男,长江大学在读硕士研究生,研究方向为地球物理测井。地址:(430100)湖北省武汉市蔡甸区蔡甸街大学路111号长江大学地球物理与石油资源学院。Email:13197248211@163.com。
  • 通信作者: 蔡明(1986—),男,博士,副教授,主要从事声波测井原理及信号处理方法与应用方面的科研与教学工作。Email:caiming@yangtzeu.edu.cn。
  • 基金资助:
    国家自然科学基金“致密储层裂缝有效性的双尺度声波测井评价方法研究”(编号:42104126)、“复杂裂缝介质多尺度声波测井响应机理实验及智能评价方法研究”(编号:42474177)和中国石油科技创新基金“超深裂缝型各向异性地层声波测井响应机理实验研究”(编号:2022DQ02-0301)联合资助。

Influence of inclined micro-fractures on shearwave attenuation in limestone

ZHOU Qingwen1,2, WU Dong3, CAI Ming1,2, ZHANG Chengguang1,2, CHEN Yuanbo4, LIN Wang3, ZHANG Yuanjun1,2, LI Zhi1,2   

  1. 1. Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education(Yangtze University), Wuhan 430100, China;
    2. College of Geophysics and Petroleum Resources, Yangtze University, Wuhan 430100, China;
    3. Information Center, Engineering Technology R & D Company Limited, CNPC, Beijing 102206, China;
    4. No. 1 Oil Production Plant, Northwest Oilfield Company, SINOPEC, Luntai 841604, Xinjiang, China
  • Received:2024-07-23 Revised:2024-09-04 Published:2025-05-10

摘要: 针对灰岩储层微裂缝精细评价难题,基于声传播原理,开展了不同裂缝条件(裂缝倾角、裂缝张开度)下的声波物理实验,建立了灰岩裂缝参数表征模型,定量分析了裂缝倾角、裂缝张开度对横波衰减的影响,并将模型在渤海湾盆地曹妃甸地区古近系沙河街组一段进行了应用。研究结果表明:①灰岩储层微裂缝岩心声波物理实验设计了0,25°,40°,55°和70°等5组不同倾角的人造裂缝岩心;以25 μm,50 μm,100 μm,150 μm,200 μm,300 μm,400 μm,500 μm和1 000 μm共9张PET薄膜作为9种不同的裂缝张开度;维持声波频率为250 kHz,对5组岩心分别测量9个裂缝张开度条件下的横波波形,每组实验都连续采集32道波形数据,通过噪声滤除程序对32道波形滤波并叠加得到效果最佳波形信号。②实验结果显示,横波衰减受裂缝影响大,衰减趋势随裂缝张开度增大而减小,衰减系数随着裂缝张开度的增大呈对数规律增大,当裂缝张开度小于等于300 μm时,衰减系数的变化更敏感;裂缝张开度相同条件下,裂缝倾角为0~40°时,横波衰减系数随裂缝倾角的增大而减小,而当裂缝倾角大于40°时,衰减系数随裂缝倾角的增大而增大。③基于实验得到裂缝倾角θ分别为0,25°,40°,55°和70°时,衰减系数α与裂缝张开度w的表征模型α=c ln w+b(式中c,b为常数),当θ为0~40°时,常数cc逐渐减小,分别为1.990 4,1.613 3和0.932 2;当θ为55°~70°时,常数c逐渐上升,分别为1.375 1和1.380 1。④利用裂缝参数表征模型计算的渤海湾盆地曹妃甸地区古近系沙河街组一段裂缝张开度与电成像测井得到的裂缝张开度相对误差为4.57%,平均绝对误差为5.5 μm,吻合度较高。

关键词: 岩石物理实验, 横波衰减, 裂缝倾角, 裂缝张开度, 裂缝参数反演模型, 阵列声波测井, 灰岩, 沙河街组一段, 曹妃甸地区

Abstract: To solve the problem of fine evaluation of microfractures in limestone reservoirs,based on the prin‐ciple of acoustic propagation,acoustic physical experiments were carried out under different fracture conditions (fracture dip angle and fracture aperture),and a characterization model of fracture parameters was established to quantitatively analyze the effects of fracture inclination and fracture opening on shear wave attenuation. The model has been applied to the first member of the Paleogene Shahejie Formation in Caofeidian area,Bohai Bay Basin. The experimental results show that:(1)Five groups of artificial fracture cores with different inclinations, including 0,25°,40°,55° and 70°,are designed in the acoustic physics experiment of microfracture cores in limestone reservoirs. 9 PET films of 25 μm,50 μm,100 μm,150 μm,200 μm,300 μm,400 μm,500 μm and 1 000 μm were used as 9 different fracture aperture degrees. The acoustic wave frequency was maintained at 250 kHz,and the transverse wave waveform under 9 fracture aperture conditions was measured for 5 groups of cores respectively. 32 channels of waveform data were continuously collected for each group of experiments,and the optimal waveform signal was obtained by filtering 32 channels of waveform through noise filtering program and superposition.(2)The acoustic physical test results show that the shear wave attenuation is greatly affected by fractures,and the attenuation trend gradually slows down with the increase of fracture aperture. The attenuation coefficient increases logarithmically with the increase of fracture aperture. When the fracture aperture is less than or equal to 300μm,the attenuation coefficient is more sensitive. Under the condition of the same fracture aperture degree,the shear wave attenuation coefficient decreases with the increase of fracture dip angle when the fracture dip angle is 0-40°,and increases with the increase of fracture dip angle when the fracture dip angle is greater than 40°.(3)The fracture parameter characterization model(Formula 3)is obtained based on the core physical experiment.(4)The relative error of fracture opening degree obtained by the fracture parameter characterization model in the first member of Paleogene Shahejie Formation in Caofeidian area of Bohai Bay Basin is 4.57% and the mean absolute deviation is 18.9 μm,indicating a high agreement.

Key words: rock physics experiment, shear wave attenuation, fracture dip angle, fracture aperture, fracture parameters inversion model, array sonic log, limestone, the first member of Shahejie Formation, Caofeidian area

中图分类号: 

  • P631.8
[1] ZHAO Kui,DU Peng. A new production prediction model for multistage fractured horizontal well in tight oil reservoirs[J]. Advances in Geo-Energy Research,2020,4(2):152-161.
[2] 章成广,江万哲,潘和平. 声波测井原理与应用[M]. 北京:石油工业出版社,2009. ZHANG Chengguang,JIANG Wanzhe,PAN Heping. Principle and application of acoustic logging[M]. Beijing:Petroleum Industry Press,2009.
[3] 陈斌,蔺敬旗,李兆春. 阵列声波测井在页岩油体积压裂效果评价中的应用[J]. 断块油气田,2021,28(4):550-554. CHEN Bin,LIN Jingqi,LI Zhaochun,et al. Application of array acoustic logging in shale oil volume fracturing effect evaluation[J]. Fault-Block Oil & Gas Field,2021,28(4):550-554.
[4] 唐圣来. 基于嵌入式多尺度裂缝模型的地质建模方法及应用[J]. 特种油气藏,2023,30(1):36-40.TANG Shenglai. Geological modeling method and its application based on embedded multi-scale fracture model[J]. Special Oil & Gas Reservoirs,2023,30(1):36-40.
[5] SU Yuanda,LI Zheng,XU Song,et al. Elastic-wave evaluation of downhole hydraulic fracturing:Modeling and field applications[J]. Geophysics,2018,83(1):D1-D8.
[6] HORNBY B E,JOHNSON D L,WINKLER K W. Fracture evaluation using reflected Stoneley-wave arrivals[J]. Geophysics, 1989,54(10):1274-1288.
[7] 唐军,章成广,信毅. 油基钻井液条件下裂缝声波测井评价方法:以塔里木盆地库车坳陷克深地区致密砂岩储集层为例[J]. 石油勘探与开发,2017,44(3):389-397. TANG Jun,ZHANG Chengguang,XIN Yi. A fracture evaluation by acoustic logging technology in oil-based mud:A case from tight sandstone reservoirs in Keshen area of Kuqa depression,Tarim Basin,NW China[J]. Petroleum Exploration and Development,2017,44(3):389-397.
[8] LEE S Q,LI Huanran,GU Xihao,et al. Near-borehole characteristics of hydraulic fractures and fracturing-induced sonicwave attenuation[J]. Geophysics,2019,84(3):D81-D87.
[9] 王俊超,陶先高,李佳琦,等. 吉木萨尔凹陷芦草沟组"上甜点段"页岩裂缝发育主控因素及评价[J]. 中国海上油气,2022, 34(6):80-92. WANG Junchao,TAO Xiangao,LI Jiaqi,et al. Main controlling factors and evaluation of "upper dessert section" shale fracture development in Lucaogou Formation,Jimsar Sag[J]. China Offshore Oil and Gas,2022,34(6):80-92.
[10] 杨博,章成广,蔡明. 基于斯通利波能量衰减的裂缝渗透性评价方法研究[J]. 地球物理学进展,2019,34(3):1127-1131. YANG Bo,ZHANG Chengguang,CAI Ming. Research on evaluation method of fracture permeability based on stoneley wave energy attenuation[J]. Progress in Geophysics,2019,34(3):1127-1131.
[11] TANG Xiaoming,CHENG C H. Fast inversion of formation permeability from Stoneley wave logs using a simplified BiotRosenbaum model[J]. Geophysics,1996,61(3):639-645.
[12] 桂金咏,李胜军,高建虎,等. 基于特征变量扩展的含气饱和度随机森林预测方法[J]. 岩性油气藏,2024,36(2):65-75. GUI Jinyong,LI Shengjun,GAO Jianhu,et al. A random forests prediction method for gas saturation based on feature variable Extension[J]. Lithologic Reservoirs,2024,36(2):65-75.
[13] 唐晓明,郑传汉,赵晓敏. 定量测井声学[M]. 北京:石油工业出版社,2004:75-107. TANG Xiaoming,ZHENG Chuanhan,ZHAO Xiaomin. Quantitative logging acoustics[M]. Beijing:Petroleum Industry Press, 2004:75-107.
[14] 赵军,张涛,何胜林,等. 基于参数优选的储层渗透率深度置信网络模型预测初探[J]. 油气藏评价与开发,2021,11(4):577-585. ZHAO Jun,ZHANG Tao,HE Shenglin,et al. Prediction of reservoir permeability by deep belief network based on optimized parameters[J]. Petroleum Reservoir Evaluation and Development,2021,11(4):577-585.
[15] 李雄炎,秦瑞宝,魏丹,等. 中国海上潜山裂缝性储层测井评价研究进展[J]. 中国海上油气,2023,35(5):69-82. LI Xiongyan,QIN Ruibao,WEI Dan,et al. Research progress in logging evaluation of offshore buried-hill fractured reservoirs in China[J]. China Offshore Oil and Gas,2023,35(5):69-82.
[16] GUI Jinyong,YIN Xingyao,GAO Jianhu,et al. Petrophysical properties prediction of deep dolomite reservoir considering pore structure[J]. Acta Geophysica,2022,70(4):1507-1518.
[17] 刘智颖,章成广,唐军,等. 裂缝对岩石电阻率的影响及其在含气饱和度计算中的应用[J]. 岩性油气藏,2018,30(2):120-128. LIU Zhiying,ZHANG Chengguang,TANG Jun,et al. Influence of fracture on rock resistivity and its application in saturation calculation[J]. Lithologic Reservoirs,2018,30(2):120-128.
[18] 桂金咏,高建虎,李胜军,等.基于弹性参数加权统计的地震岩相预测方法[J].地球物理学报,2020,63(1):298-312. GUI Jinyong,GAO Jianhu,LI Shengjun,et al. The method of seismic lithofacies prediction based on weighted statistics of elastic parameters[J]. Chinese Journal of Geophysics,2020,63(1):298-312.
[19] RATHORE J S. 控制裂隙几何结构的合成砂岩的纵、横波各向异性[J]. 石油物探译丛,1996,19(4):83-85. RATHORE J S. Anisotropy of longitudinal and transverse waves in synthetic sandstone controlled by fracture geometry[J]. Petroleum Reservoir Evaluation and Development,1996, 19(4):83-85.
[20] STEWART R R,DYAUR N,OMOBOYA B,et al. Physical modeling of anisotropic domains:Ultrasonic imaging of laser-etched fractures in glass[J]. Geophysics:Journal of the Society of Exploration Geophysicists,2013,78(1):D11-D19.
[21] AMALOKWU K,CHAPMAN M,BEST A I,et al. Water saturation effects on P-wave anisotropy in synthetic sandstone with aligned fractures[J]. Geophysical Journal International,2015, 202:1088-1095.
[22] 魏建新,狄帮让. 裂隙密度对纵波传播特性影响的实验观测[J]. 石油地球物理勘探,2007,42(5):554-559. WEI Jianxin,DI Bangrang. Experimentally surveying influence of fractural density on P-wave propagating characters[J]. Petroleum Geophysical Prospecting,2007,42(5):554-559.
[23] 尹志恒,狄帮让,魏建新,等. 裂缝参数对纵波能量衰减影响的物理模型研究[J]. 石油地球物理勘探,2012,47(5):728-734. YIN Zhiheng,DI Bangrang,WEI Jianxin,et al. Physical model research on the influence of fracture parameters on compressional wave energy attenuation[J]. Petroleum Geophysical Prospecting,2012,47(5):728-734.
[24] 赵卫华,孙东生,李阿伟,等. 裂隙对地震波速度影响的物理模型试验研究[R]. 北京:中国地球科学联合学术年会,2014. ZHAO Weihua,SUN Dongsheng,LI Awei,et al. Physical model test study on the effect of cracks on seismic wave velocity[R]. Beijing:Annual Meeting of Chinese Geoscience Union,2014.
[25] 蔡明,章成广,唐军,等. 参数估计法声波远探测反射波提取效果影响因素研究[J]. 西安石油大学学报(自然科学版), 2020,35(1):42-48. CAI Ming,ZHANG Chengguang,TANG Jun,et al. Study on factors of influencing extraction effect of reflection wave in acoustic remote detection using parameter estimation method[J]. Journal of Xi'an Shiyou University(Natural Science Edition),2020,35(1):42-48.
[26] 蔡明,章成广,韩闯,等. 微裂缝对横波衰减影响的实验研究及其在致密砂岩裂缝评价中的应用[J]. 中国石油大学学报(自然科学版),2020,44(1):45-52. CAI Ming,ZHANG Chengguang,HAN Chuang,et al. Experimental research of effect of microfracture on shear wave attenu ation and its application on fracture evaluation in tight sand formation[J]. Journal of China University of Petroleum(Edition of Natural Science),2020,44(1):45-52.
[27] 李宁,王克文,刘鹏,等. 不同裂缝条件下斯通利波幅度衰减实验[J]. 石油勘探与开发,2021,48(2):258-265. LI Ning,WANG Kewen,LIU Peng,et al. Experimental study on attenuation of Stoneley wave under different fracture factors[J]. Petroleum Exploration and Development,2021,48(2):258-265.
[28] 陈乔,刘向君,梁利喜,等. 裂缝模型声波衰减系数的数值模拟[J]. 地球物理学报,2012,55(6):2044-2052. CHEN Qiao,LIU Xiangjun,LIANG Lixi,et al. Numerical simulation of the fractured model acoustic attenuation coefficient[J]. Chinese Journal of Geophysics,2012,55(6):2044- 2052.
[29] ZHOU Ying,ZHONG Xiaoqin,NIE Xin. Identification and parameter characterization of pores and fractures in shales based on multi-scale digital core data[J]. Advances in Geo-Energy Research,2024,13(2):146-160.
[30] CAI Ming,WU Hongliang,LIU Peng. Intelligent calculation method of relative sonic attenuation and its application to fracture evaluation in tight sandstone reservoir[J]. Journal of Petroleum Science and Engineering,2022,218:2-9.
[31] 赵岩,毛宁波,陈旭. 基于时频域信噪比的自适应增益限反Q滤波方法[J]. 岩性油气藏,2021,33(4):85-92. ZHAO Yan,MAO Ningbo,CHEN Xu. Self-adaptive gain-limit inverse Q filtering method based on SNR in time-frequency domain[J]. Lithologic Reservoirs,2021,33(4):85-92.
[32] 孟会杰,苏勤,曾华会,等. 基于独立分量分析的地震信号盲源分离及应用[J]. 岩性油气藏,2021,33(4):93-100. MENG Huijie,SU Qin,ZENG Huahui,et al. Blind source separation of seismic signals based on ICA algorithm and its application[J]. Lithologic Reservoirs,2021,33(4):93-100.
[33] 明君,周建科,彭刚,等. 地震资料频变剩余相位校正技术及其在渤海BZ油田的应用[J]. 中国海上油气,2023,35(4):66-75. MING Jun,ZHOU Jianke,PENG Gang,et al. Frequency-variation residual phase correction technique of seismic data and its application in Bohai BZ oilfield[J]. China Offshore Oil and Gas, 2023,35(4):66-75.
[34] 杜晓宇,金之钧,曾联波,等. 基于成像测井的深层陆相页岩油储层天然裂缝有效性评价[J]. 石油与天然气地质,2024, 45(3):852-865. DU Xiaoyu,JIN Zhijun,ZENG Lianbo,et al. Evaluation of natural fracture effectiveness in deep lacustrine shale oil reservoirs based on formation microresistivity imaging logs[J]. Oil & Gas Geology,2024,45(3):852-865.
[35] 任杰. 碳酸盐岩裂缝性储层常规测井评价方法[J]. 岩性油气藏,2020,32(6):129-137. REN Jie. Conventional logging evaluation method for carbonate fractured reservoir[J]. Lithologic Reservoirs,2020,32(6):129-137.
[36] 张璐,何峰,陈晓智,等. 基于倾角导向滤波控制的似然属性方法在断裂识别中的定量表征[J]. 岩性油气藏,2020,32(2):108-114. ZHANG Lu,HE Feng,CHEN Xiaozhi,et al. Quantitative characterization of fault identification using likelihood attribute based on dip-steering filter control[J]. Lithologic Reservoirs, 2020,32(2):108-114.
[37] 包汉勇,刘超,甘玉青,等. 四川盆地涪陵南地区奥陶系五峰组-志留系龙马溪组页岩古构造应力场及裂缝特征[J]. 岩性油气藏,2024,36(1):14-22. BAO Hanyong,LIU Chao,GAN Yuqing,et al. Paleotectonic stress field and fracture characteristics of shales of Ordovician Wufeng Formation to Silurian Longmaxi Formation in southern Fuling area,Sichuan Basin[J]. Lithologic Reservoirs,2024,36(1):14-22.
[1] 闫雪莹, 桑琴, 蒋裕强, 方锐, 周亚东, 刘雪, 李顺, 袁永亮. 四川盆地公山庙西地区侏罗系大安寨段致密油储层特征及高产主控因素[J]. 岩性油气藏, 2024, 36(6): 98-109.
[2] 肖博雅. 二连盆地阿南凹陷白垩系凝灰岩类储层特征及有利区分布[J]. 岩性油气藏, 2024, 36(6): 135-148.
[3] 王洪星, 韩诗文, 胡佳, 潘志浩. 松辽盆地德惠断陷白垩系火石岭组凝灰岩储层预测及成藏主控因素[J]. 岩性油气藏, 2024, 36(5): 35-45.
[4] 龙盛芳, 侯云超, 杨超, 郭懿萱, 张杰, 曾亚丽, 高楠, 李尚洪. 鄂尔多斯盆地西南部庆城地区三叠系长7段—长3段层序地层特征及演化规律[J]. 岩性油气藏, 2024, 36(1): 145-156.
[5] 罗贝维, 尹继全, 胡广成, 陈华, 康敬程, 肖萌, 朱秋影, 段海岗. 阿联酋西部地区白垩系森诺曼阶高孔渗灰岩储层特征及控制因素[J]. 岩性油气藏, 2023, 35(6): 63-71.
[6] 谢瑞, 张尚锋, 周林, 刘皓天, 姚明君, 蒋雪桂. 川东地区侏罗系自流井组大安寨段致密储层油气成藏特征[J]. 岩性油气藏, 2023, 35(1): 108-119.
[7] 张鹏, 杨巧云, 范宜仁, 张云, 张海涛. 基于Xu-White模型的致密砂岩储层含气性评价[J]. 岩性油气藏, 2020, 32(6): 138-145.
[8] 刘航宇, 田中元, 徐振永. 基于分形特征的碳酸盐岩储层孔隙结构定量评价[J]. 岩性油气藏, 2017, 29(5): 97-105.
[9] 徐雄飞, 文川江, 李玉平, 任忠跃, 肖冬生, 冯亚琴. 马朗凹陷条湖组凝灰岩致密储层特征及形成条件分析[J]. 岩性油气藏, 2017, 29(3): 34-41.
[10] 艾林, 周明顺, 张杰, 梁霄, 钱博文, 刘迪仁. 基于煤岩脆性指数的煤体结构测井定量判识[J]. 岩性油气藏, 2017, 29(2): 139-144.
[11] 王 浩,费怀义,程绪彬,李洪玺. 别什肯特坳陷区卡洛夫—牛津阶缓坡相灰岩储层特征及主控因素[J]. 岩性油气藏, 2016, 28(6): 23-29.
[12] 焦立新,刘俊田,李留中,韩 成,张 品,龙 飞. 三塘湖盆地沉凝灰岩致密油藏测井评价技术与应用[J]. 岩性油气藏, 2015, 27(2): 83-91.
[13] 李彬,罗东红,梁卫,汪瑞良,王愫,戴建文. 双反射偏移技术实现礁灰岩油藏断层和裂缝的有效预测[J]. 岩性油气藏, 2012, 24(2): 92-97.
[14] 张学涛,王祝文,原镜海. 利用时频分析方法在阵列声波测井中区分油水层[J]. 岩性油气藏, 2008, 20(1): 101-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!