岩性油气藏 ›› 2013, Vol. 25 ›› Issue (3): 97–101.doi: 10.3969/j.issn.1673-8926.2013.03.017

• 技术方法 • 上一篇    下一篇

煤岩中水分含量对渗透率的影响

马飞英1,王永清1,王林2,章双龙1,张强3   

  1. 1.西南石油大学油气藏地质及开发工程国家重点实验室,四川成都610500; 2.中国石油浙江油田分公司西南采气厂,四川宜宾645250; 3.中国石化西南油气分公司广西采油厂,广西田东531599
  • 出版日期:2013-06-01 发布日期:2013-06-01
  • 作者简介:马飞英(1985-),女,西南石油大学在读博士研究生,研究方向为油气田开发。 地址:(610500)四川省成都市新都区西南石油大学油气藏地质及开发工程国家重点实验室。 E-mail:xiaomahehe117@sina.com
  • 基金资助:

    国家重大科技专项“深煤层煤层气增产改造技术研究”(编号:2011ZX05042-002-001)资助

Influence of moisture content in coal rock on permeability

MA Feiying1,WANG Yongqing1,WANG Lin2,ZHANG Shuanglong1,ZHANG Qiang3   

  1. 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University,Chengdu 610500, China; 2. Southwest Gas Production Plant, PetroChina Zhejiang Oilfield Company,Yibin 645250, China;3. Guangxi Oil Production Plant, Southwest Oil and Gas Company, Sinopec, Tiandong 531599, China
  • Online:2013-06-01 Published:2013-06-01

摘要:

为了探索煤岩中水分含量对渗透率的影响,对我国北方某煤层气区块 3 号和 15 号煤层的原煤煤样进行了实验。 结果表明:在相同条件下,干燥煤样、3%水分含量煤样及 6%水分含量煤样这 3 种煤样的渗透率均随孔隙压力的增大而先减小后增大,大致呈“抛物线”变化;干燥煤样的渗透率明显高于含水煤样的渗透率;随着水分含量的增加,煤样渗透率下降。 在实验和前人研究的基础上,利用不同水分含量煤样的实验数据进行了对比分析,并建立了考虑水分含量煤岩收缩/膨胀的渗透率模型,最后运用实例,将模型预测结果与现场试井渗透率数据进行了对比分析,其相对误差不大。 该研究成果对煤层气开采具有一定的指导意义。

关键词: 深部储层, 微幅构造, 综合评价, 库姆格列木群, 塔河油田西部

Abstract:

In order to explore the influence of moisture content in coal rock on permeability, this paper made experiments on raw coal samples in a northern coal-bed methane blocks of No. 3 and No. 15 coal bed. The results show that: under the same conditions, the permeability of three kinds of coal rock of dried coal samples, 3% moisture content coal samples and 6% moisture content coal samples first decreases and then increases with the increase of pore pressure, roughly displays “parabola” change. The permeability of dried coal samples is significantly higher than that of moisture content coal samples. With the increase of moisture content, permeability of coal samples decreased. On the basis of experiments and previous studies, using comparative analysis method on experimental data of the coal samples with different moisture content, we modified the Langmuir isothermal equation and set up a permeability model considering the moisture content and coal rock contraction-expansion. Finally, contrastively analyzed the predicted results by model and site well testing permeability data of the application examples, and relative error is small, so this model has certain guiding significance for coal-bed methane mining.

Key words: deep reservoir, tiny amplitude structure, comprehensive evaluation, Kumugeliemu group, western Tahe oilfield

[1] 傅雪海,秦勇,韦重韬. 煤层气地质学[M].徐州:中国矿业大学出版社,2007:2-9.
[2] 李培超,孔祥言,曾清红等.煤层渗透率影响因素综述与分析[J].天然气工业,2002,22(5):45-49.
[3] 叶建平,史保生,张春才.中国煤储层渗透性及其主要影响因素[J].煤炭学报,1999,24(2):118-122.
[4] 傅雪海,秦勇,姜波等.山西沁水盆地中—南部煤储层渗透率物理模拟与数值模拟[J].地质科学,2003,38(2):221-229.
[5] 薄冬梅,赵永军,姜林.煤储层渗透率研究方法及主要影响因素[J].油气地质与采收率,2008,15(1):18-21.
[6] 张馨元,王晓东,张俊凡等.影响煤层气吸附性能因素探讨[J].中国石油和化工标准与质量,2011,85.
[7] Harpalani S,Zhao X. Changes in flow behavior of coal with ga desorption[R]. SPE 19450,1989.
[8] Palmer I,Mansoori J. How permeability depends on stress and pore pressure in coalbeds:A new model[J]. SPE Reservoir Evaluation & Engineering,1998,1(6):539-544.
[9] Shi J Q,Durucan S. Drawdown induced changes in permeability of coalbeds:A new interpretation of the reservoir response to primary recovery[J]. Transport in Porous Media,2004,56(1):1-16.
[10] Unsworth J F,Fowler C S,Heard N A. et al. Moisture in coal:1.Differentiation between forms of moisture by N.M.R. and microwave attenuation techniques[J]. Fuel,1988,67(8):1111-1119.
[11] Joubert J I,Grein C T and Bienstock D. Sorption of methane in moist coal[J]. Fuel,1973,52(3):181-185.
[12] Clarkson C R,Bustin R M. Binary gas adsorption/desorption isotherms:Effect of moisture and coal composition upon carbon dioxide selectivity over methane[J]. International Journal of Coal Geology,2000,42(4):241-271.
[13] Krooss B M,Bergen F, Gensterblum Y,et al. High-pressur methane and carbon dioxide adsorption on dry and moisture-equilibrated pennsylvania coals[J]. International Journal of Coal Geology,2002,51(2):69-92.
[14] Ozdemir E. Chemistry of the adsorption of carbon dioxide by argonne premium coals and a model to simulate CO2 sequestration in coal seams[D]. Pennsylvania:University of Pittsburgh,2004.
[15] Jahediesfanjani H,Civan F. Effect of resident water on enhanced coal gas recovery by simultaneous CO2 /N2 injection[R]. SPE 102634,2006.
[16] Thararoop P. Development of a multi-mechanistic,dual-porosity,dual-permeability numerical flow model for coal-bed methane reservoirs accounting for coal shrinkage and swelling effects [D].Pennsylvania:The Pennsylvania State University,2010.
[17] Reiss L H. The reservoir engineering aspects of fractured formations[M]. Paris:Gulf Publishing Company,1980.
[18] 刘飞.山西沁水盆地煤岩储层特征及高产富集区评价[D].成都:成都理工大学,2007:63-92.
[19] 中联煤层气有限责任公司.中国煤层气勘探开发技术研究[M].北京:石油工业出版社,2007:117-250.
[1] 张大智,张晓东,杨步增. 徐家围子断陷沙河子组致密气地质甜点综合评价[J]. 岩性油气藏, 2015, 27(5): 98-103.
[2] 张晶,李双文,刘化清,袁淑琴,牛海清,刘志刚. 歧口凹陷歧南斜坡深部储层特征及综合评价[J]. 岩性油气藏, 2013, 25(6): 46-52.
[3] 葛善良,王 英,曹 阳,于 雷. 塔河油田西部深层微幅构造综合评价[J]. 岩性油气藏, 2013, 25(4): 63-67.
[4] 刁帆,文志刚. 鄂尔多斯盆地胡尖山油田延长组长4+52 储层特征及综合评价[J]. 岩性油气藏, 2011, 23(2): 53-58.
[5] 康园园,邵先杰,石磊,单宇,于航. 煤层气开发目标区精选体系与方法研究[J]. 岩性油气藏, 2011, 23(1): 62-66.
[6] 梁星如,罗永胜,杜新江,熊东方. 兴9 砾岩体的分布预测及气藏评价研究[J]. 岩性油气藏, 2009, 21(3): 82-85.
[7] 付广,刘博,吕延防. 泥岩盖层对各种相态天然气封闭能力综合评价方法[J]. 岩性油气藏, 2008, 20(1): 21-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .