Lithologic Reservoirs ›› 2018, Vol. 30 ›› Issue (N): 12-16.doi: 10.12108/yxyqc.20180302

   

Comparison of productivity of vertical wells with horizontal wells

LI Chuanliang1, ZHU Suyang1, CHAI Gaijian2, DONG Fengling3   

  1. 1. College of Petroleum Engineering, Southwest Petroleum University, Chengdu 610599, China;
    2. SCP Oilfield Service Co., Ltd., Xi'an 710021, China;
    3. No.2 Oil Production Plant, Zhongyuan Oilfield Company, Sinopec, Fanxian 457532, Henan, China
  • Received:2017-12-05 Revised:2018-01-07 Online:2018-05-21

Abstract: Exploitation of reservoirs can use either vertical wells or horizontal wells. Wells can be either fractured or unfractured. In well stimulation selection of field practice,the stimulation proficiency is usually taken into account at first besides of stimulation cost. The stimulation proficiencies of vertical wells and horizontal wells were studied under two circumstances of wells being fractured and not fractured. The effects of pay thickness,drainage area,fracture number,rock permeability and fluid viscosity to stimulation proficiency were also studied separately. The study shows that the stimulation proficiency of unfractured horizontal wells is not so good as vertical fractured wells. The thick oil layer is suitable for being exploited by vertical wells,while the thin oil layer is more suitable for using horizontal wells than vertical wells. The larger drainage area of wells cannot increase their stimulation proficiency largely,and can prolong the production time of wells. The fracture number of wells can increase their stimulation proficiency very effectively. The volumetric fracturing or multi-stage fracturing is the most effective stimulation method of horizontal wells. Horizontal wells cannot demonstrate higher stimulation proficiency without fracturing. The middle and high permeability reservoirs can take any types of well for exploitation,but the low permeability reservoirs must use fractured horizontal wells. The middle and low viscosity oil reservoirs can take any types of well for exploitation,but the high viscosity or heavy oil reservoirs must be developed by the aid of thermal recovery method.

CLC Number: 

  • TE34
[1] 秦同洛, 李璗, 陈元千. 实用油藏工程方法. 北京:石油工业出版社, 1989:176-241. QIN T L, LI D, CHEN Y Q. Practical reservoir engineering. Beijing:Petroleum Industry Press, 1989:176-241.
[2] 李传亮, 孔祥言. 确定采油指数和地层压力的方法研究. 西南石油大学学报(自然科学版), 2000, 22(2):40-42. LI C L, KONG X Y. Study on the determination of productivity index and formation prssure of oil wells. Journal of Southwest Petroleum University(Science & Technology Edition), 2000, 22(2):40-42.
[3] 阴艳芳. 水平井技术在薄层低渗透油藏开发中的应用. 石油地质与工程, 2007, 21(6):50-52. YIN Y F. Application of horizontal well technology in low permeability reservoir with thin layers. Petroleum Geology and Engineering, 2007, 21(6):50-52.
[4] 于天忠, 张建国, 叶双江, 等. 辽河油田曙一区杜84块超稠油油藏水平井热采开发技术研究. 岩性油气藏, 2011, 23(6):114-119. YU T Z, ZHANG J G, YE S J, et al. Development technology with thermal recovery for horizontal well of superheavyoil reservoir in Du 84 block in Shu 1 area, Liaohe Oilfield. Lithologic Reservoirs, 2011, 23(6):114-119.
[5] 王飞宇. 提高热采水平井动用程度的方法与应用. 岩性油气藏, 2010, 22(增刊1):100-103. WANG F Y. Method to improve producing degree of thermal recovery horizontal wells and its application. Lithologic Reservoirs, 2010, 22(Suppl 1):100-103.
[6] 邓学峰. 致密低渗油藏压裂水平井合理生产压差优化设计. 岩性油气藏, 2017, 29(1):135-139. DENG X F. Optimization of reasonable production pressure difference of fractured horizontal well in low permeability tight reservoirs. Lithologic Reservoirs, 2017, 29(1):135-139.
[7] 刘建坤, 蒋廷学, 万有余, 等. 致密砂岩薄层压裂工艺技术研究及应用. 岩性油气藏, 2018, 30(1):165-172. LIU J K, JIANG T X, WAN Y Y, et al. Fracturing technology for thin layer in tight sandstone reservoir and its application. Lithologic Reservoirs, 2018, 30(1):165-172.
[8] 何吉祥, 姜瑞忠, 毛瑜, 等. 致密气藏气水两相压裂水平井产能计算方法. 岩性油气藏, 2017, 29(4):154-161. HE J X, JIANG R Z, MAO Y, et al. Productivity calculation method for gas-water two phase fractured horizontal wells in tight gas reservoir. Lithologic Reservoirs, 2017, 29(4):154-161.
[9] 李传亮. 油藏工程原理.3版. 北京:石油工业出版社, 2017:191-213. LI C L. Fundamentals of reservoir engineering. 3th ed. Beijing:Petroleum Industry Press, 2017:191-213.
[10] 李传亮, 林兴, 朱苏阳.长水平井的产能公式. 新疆石油地质, 2014, 35(3):361-364. LI C L, LIN X, ZHU S Y. A production rate equation for long horizontal wells. Xinjiang Petroleum Geology, 2014, 35(3):361-364.
[11] 曾焱, 王本成, 聂仁仕.线性复合油藏多级压裂水平井渗流模型. 石油学报, 2017, 38(6):687-695. ZENG Y, WANG B C, NIE R S. A production rate equation for long horizontal wells. Acta Petrolei Sinica, 2017, 38(6):687-695.
[12] 李传亮, 朱苏阳. 水平井的表皮因子. 岩性油气藏, 2014, 26(4):16-21. LI C L, ZHU S Y. Skin factor of horizontal wells. Lithologic Reservoirs, 2014, 26(4):16-21.
[13] 李小龙, 许华儒, 刘晓强, 等. 径向井压裂裂缝形态及热采产能研究. 岩性油气藏, 2017, 29(6):154-160. LI X L, XU H R, LIU X Q, et al. Fracture morphology and production performance of radial well fracturing. Lithologic Reservoirs, 2017, 29(6):154-160.
[1] KONG Chuixian, BA Zhongchen, CUI Zhisong, HUA Meirui, LIU Yuetian, MA Jing. Stress-sensitive productivity model of fractured horizontal wells in volcanic reservoirs [J]. Lithologic Reservoirs, 2021, 33(4): 166-175.
[2] YANG Meihua, ZHONG Haiquan, LI Yingchuan. New production index curve of fractured-vuggy carbonate reservoirs [J]. Lithologic Reservoirs, 2021, 33(2): 163-170.
[3] ZHU Suyang, LI Dongmei, LI Chuanliang, LI Huihui, LIU Xiongzhi. Re-discussion on principle of constant porosity during primary deformation of rock [J]. Lithologic Reservoirs, 2021, 33(2): 180-188.
[4] ZHANG Yunlai, CHEN Jianbo, ZHOU Haiyan, ZHANG Jilei, ZHANG Wei. Quantitative characterization of sweep coefficient of water drive in horizontal well for offshore bottom water reservoir [J]. Lithologic Reservoirs, 2020, 32(6): 146-153.
[5] CAO Xusheng, HAN Yun, ZHANG Jizhuo, LUO Zhiwei. Influence of imbibition on the development of fractured low permeability conglomerate reservoir: a case stuey from Urho Formation in Mahu oilfield [J]. Lithologic Reservoirs, 2020, 32(4): 155-162.
[6] CUI Yongzheng, JIANG Ruizhong, GAO Yihua, QIAO Xin, WANG Qiong. Pressure transient analysis of hydraulic fractured vertical wells with variable conductivity for CO2 flooding [J]. Lithologic Reservoirs, 2020, 32(4): 172-180.
[7] QIAN Zhen, LI Hui, QIAO Lin, BAI Sen. Experiment on the mechanism of low salinity waterflooding in carbonate reservoir [J]. Lithologic Reservoirs, 2020, 32(3): 159-165.
[8] FENG Wei, YANG Chen, TAO Shanxun, WANG Caizhong, LU Yanying, ZHANG Lufeng, ZHOU Fujian. Experimental study on the surface feature of acid-etched fractures in carbonate rocks [J]. Lithologic Reservoirs, 2020, 32(3): 166-172.
[9] DU Xulin, DAI Zong, XIN Jing, LI Hailong, CAO Renyi, LUO Donghong. Three-dimensional water flooding physical simulation experiment of horizontal well in heavy oil reservoir with strong bottom water [J]. Lithologic Reservoirs, 2020, 32(2): 141-148.
[10] DENG Chenggang, LI Jiangtao, CHAI Xiaoying, CHEN Fenjun, YANG Xiyan, WANG Haicheng, LIAN Yunxiao, TU Jiasha. Early identification methods of water invasion in weak water drive gas reservoirs in Sebei gas field,Qaidam Basin [J]. Lithologic Reservoirs, 2020, 32(1): 128-134.
[11] SONG Mingming, HAN Shuqiao, DONG Yunpeng, CHEN Jiang, WAN Tao. Microscopic water flooding efficiency and main controlling factors of tight sandstone reservoir [J]. Lithologic Reservoirs, 2020, 32(1): 135-143.
[12] REN Wenbo. Application of flow potential control in water control and oil stabilization of fractured-vuggy carbonate reservoirs [J]. Lithologic Reservoirs, 2019, 31(6): 127-134.
[13] JIANG Ruizhong, ZHANG Chunguang, GAO Yihua, GENG Yanhong, YU Hui, LI Haoyuan. Fractal nonlinear seepage model of horizontal wells in fractured-vuggy carbonate reservoirs [J]. Lithologic Reservoirs, 2019, 31(6): 118-126.
[14] SUN Liang, LI Yong, YANG Jing, LI Baozhu. Water-cut rising patterns and optimal water injection techniques of horizontal wells in thin carbonate reservoir with bottom water [J]. Lithologic Reservoirs, 2019, 31(6): 135-144.
[15] ZHANG Zhigang, LIU Chunyang, LIU Guozhi. Dynamic and static comprehensive evaluation method for reservoir connectivity of low-permeability oilfield [J]. Lithologic Reservoirs, 2019, 31(5): 108-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
TRENDMD: