Lithologic Reservoirs ›› 2020, Vol. 32 ›› Issue (1): 111-119.doi: 10.12108/yxyqc.20200112

Previous Articles     Next Articles

Three-parameter AVO inversion method of pore modulus based on PP and PS wave simultaneous joint inversion

DING Yan1,2,3, DU Qizhen1,2, LIU Lihui3, FU Liyun1,2, LENG Xuemei1,2, LIU Zixuan4   

  1. 1. Key Laboratory of Deep Oil and Gas, China University of Petroleum(East China), Qingdao 266580, Shandong, China;
    2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266580, Shandong, China;
    3. Beijing Rock Star Petroleum Technology Co., Ltd., Beijing 100083, China;
    4. Sinopec International Petroleum Exploration and Production Corporation, Beijing 100029, China
  • Received:2019-06-22 Revised:2019-08-06 Online:2020-01-21 Published:2019-11-22

Abstract: Equivalent fluid bulk modulus is a sensitive fluid indicator,which is of great significance in hydrocarbon identification of complex reservoirs. However,conventional single P wave AVO inversion method for fluid identification using Gassmann fluid factor has problems including poor precision,multi-solution,and ambiguous description of geological boundaries,which restricts the applications of these techniques in fluid identification. Based on rock physical model of two-phase medium,a new linear approximation of PP wave and PS wave Zoeppritz equation which consists of equivalent fluid bulk modulus,shear modulus of rock skeleton and porosityrelated gain was derived firstly. Then,simultaneous joint inversion was carried out under the constraint of Bayesian theory and Cauchy prior distribution with the combination of PP wave and PS wave data. The test results of Marmousi2 reservoir model show that compared with the inversion methods merely using PP wave data,simultaneous joint inversion based on independent PP wave and PS wave can provide more stable inversion results, higher accuracy and clearer description of geological boundary characteristics. The application in A oilfield proved the feasibility and robustness of this method. The proposed PP and PS wave simultaneous joint inversion method has certain reference for improving reservoir fluid identification.

Key words: simultaneous joint inversion, fluid identification, equivalent fluid bulk modulus, shear modulus, porosity

CLC Number: 

  • P631.4
[1] GOODWAY B, CHEN T, DOWNTON J. Improved AVO fluid detection and lithology discrimination using Lamé petrophysical parameters; "λ ρ","μ ρ",&"λ/μ fluid stack", from P and S inversions. SEG Technical Program Expanded Abstracts, 1997, 16(1):183-186.
[2] RUSSELL B H, HEDLIN K, HILTERMAN F J, et al. Fluidproperty discrimination with AVO:a Biot-Gassmann perspective. Geophysics, 2003, 68(1):29-39.
[3] 李超, 张金淼, 朱振宇. 深部储层流体因子直接反演方法. 石油物探, 2017, 56(6):827-833. LI C, ZHANG J M, ZHU Z Y. Direct inversion for fluid factor of deep reservoirs. Geophysical Prospecting for Petroleum, 2017, 56(6):827-833.
[4] 贾凌云, 李琳, 王千遥, 等. 基于广义弹性阻抗的流体识别因子反演方法研究与应用. 石油物探, 2018, 57(2):302-311. JIA L Y, LI L, WANG Q Y, et al. Fluid identification factor inversion based on generalized elastic impedance. Geophysical Prospecting for Petroleum, 2018, 57(2):302-311.
[5] 印兴耀, 张世鑫, 张繁昌, 等. 利用基于Russell近似的弹性波阻抗反演进行储层描述和流体识别. 石油地球物理勘探, 2010, 45(3):373-380. YIN X Y, ZHANG S X, ZHANG F C, et al. Utilizing Russell approximation-based elastic wave impedance inversion to conduct reservoir description and fluid identification. Oil Geophysical Prospecting, 2010, 45(3):373-380.
[6] 印兴耀, 张世鑫, 张峰. 针对深层流体识别的两项弹性阻抗反演与Russell流体因子直接估算方法研究. 地球物理学报, 2013, 56(7):2378-2390. YIN X Y, ZHANG S X, ZHANG F. Two-term elastic impedance inversion and Russell fluid factor direct estimation method for deep reservoir fluid identification. Chinese Journal of Geophysics, 2013, 56(7):2378-2390.
[7] ZONG Z Y, YIN X Y, WU G C. Elastic impedance variation with angle inversion for elastic parameters. Journal of Geophysics and Engineering, 2012, 9(3):247-260.
[8] 张世鑫. 基于地震信息的流体识别方法研究与应用. 青岛:中国石油大学(华东), 2012. ZHANG S X. Methodology and application of fluid identification with seismic information. Qingdao:China University of Petroleum(East China),2012.
[9] KURT H. Joint inversion of AVA data for elastic parameters by bootstrapping. Computers & Geosciences, 2007, 33(3):367-382.
[10] 张远银, 孙赞东, 金之钧. P-P与P-SV波联合反演方法分类与对比. 石油物探, 2016, 55(4):587-596. ZHANG Y Y, SUN Z D, JIN Z J. Classification and quantitative comparison of P-P and P-SV wave joint inversion methods. Geophysical Prospecting for Petroleum, 2016, 55(4):587-596.
[11] 蔡志东, 李青, 王冲, 等. 利用VSP多波资料预测地层深度及油气属性. 岩性油气藏, 2019, 31(1):109-115. CAI Z D, LI Q, WANG C, et al. Prediction of strata depth and hydrocarbon attributes by using VSP multi-wave data. Lithologic Reservoirs, 2019, 31(1):109-115.
[12] LARSEN J A, MARGRAVE G F, LU H. AVO analysis by simultaneous PP and PS weighted stacking applied to 3 C-3 D seismic data. SEG Expanded Abstracts, 1999:721-723.
[13] 陈天胜, 刘洋, 魏修成. 纵波和转换波联合AVO反演方法研究. 中国石油大学学报(自然科学版), 2006, 30(1):33-37. CHEN T S, LIU Y, WEI X C. Simultaneous P-and S-wave AVO inversion. Journal of China University of Petroleum(Edition of Natural Science), 2006, 30(1):33-37.
[14] DU Q Z, YAN H Z. PP and PS joint AVO inversion and fluid prediction. Journal of Applied Geophysics, 2013, 90(2):110-118.
[15] DOMENICO S N. Elastic properties of unconsolidated porous sand reservoirs. Geophysics, 1977, 42(7):1339-1368.
[16] HAN D, BATZLE M L. Gassmann's equation and fluid-saturation effects on seismic velocities. Geophysics, 2004, 69(2):398-405.
[17] NUR A, MAVKO G, DVORKIN J, et al. Critical porosity:a key to relating physical properties to porosity in rocks. The Leading Edge, 1998, 17(3):357-362.
[18] RUSSELL B H, GRAY D, HAMPSON D P. Linearized AVO and poroelasticity. Geophysics, 2011, 54(6):680-688.
[19] GARDNER G H F, GARDNER L W, GREGORY A R. Formation velocity and density:the diagnostic basis for stratigraphic traps. Geophysics, 1974, 39(6):770-780.
[20] 王秀姣, 黄家强, 姜仁, 等. 不同含气砂岩的AVO响应类型及其近似式误差分析. 岩性油气藏, 2017, 29(5):120-126. WANG X J, HUANG J Q, JIANG R, et al. AVO response of different types of gas-bearing sandstone and error analysis of approximate formulas. Lithologic Reservoirs, 2017, 29(5):120-126.
[21] ZOEPPRITZ K, ERDBEENWELLEN VII B. On the reflection and penetration of seismic waves through unstable layers. Gottinger Nachrichten, 1919, 1:66-84.
[22] 李超, 印兴耀, 张广智, 等. 基于贝叶斯理论的孔隙流体模量叠前AVA反演. 石油物探, 2015, 54(4):467-476. LI C, YIN X Y, ZHANG G Z, et al. Prestack AVA inversion for pore fluid modulus based on the Bayesian theory. Geophysical Prospecting for Petroleum, 2015, 54(4):467-476.
[23] MARTIN G S, WILEY R, MARTFURT K J. Marmousi2:an elastic upgrade for Marmousi. The Leading Edge, 2006, 25(2):156-166.
[24] 郑笑雪, 杜启振, 孟宪军, 等. 横向约束分步叠前弹性参数反演. 石油地球物理勘探, 2017, 52(4):760-769. ZHENG X X, DU Q Z, MENG X J, et al. Lateral constraint two-step prestack elastic parameter inversion. Oil Geophysical Prospecting, 2017, 52(4):760-769.
[1] XIAO Boya. Characteristics and favorable zone distribution of tuff reservoirt of Cretaceous in A’nan sag,Erlian Basin [J]. Lithologic Reservoirs, 2024, 36(6): 135-148.
[2] CHEN Kang, DAI Juncheng, WEI Wei, LIU Weifang, YAN Yuanyuan, XI Cheng, LYU Yan, YANG Guangguang. Lithofacies classification of tight sandstone based on Bayesian Facies-AVO attributes:A case study of the first member of Jurassic Shaximiao Formation in central Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 111-121.
[3] ZHANG Wenbo, LI Ya, YANG Tian, PENG Siqiao, CAI Laixing, REN Qiqiang. Characteristics and diagenetic evolution of Permian pyroclastic reservoirs in Jianyang area,Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(2): 136-146.
[4] LUO Beiwei, YIN Jiquan, HU Guangcheng, CHEN Hua, KANG Jingcheng, XIAO Meng, ZHU Qiuying, DUAN Haigang. Characteristics and controlling factors of high porosity and permeability limestone reservoirs of Cretaceous Cenomanian in the western United Arab Emirates [J]. Lithologic Reservoirs, 2023, 35(6): 63-71.
[5] XIA Qingsong, LU Jiang, YANG Peng, ZHANG Kun, YANG Chaoyi, NIE Junjie, ZHU Yunfang, LI Lifang. Microscopic pore structure characteristics of the upper member of Oligocene Xiaganchaigou Formation in Yingxi area, Qaidam Basin [J]. Lithologic Reservoirs, 2023, 35(1): 132-144.
[6] ZHOU Hongfei, DAI Xin, JIA Min, ZHANG Rui, LI Guohui, LI Nan, YANG Qiang, BAI Rong. Hydrocarbon accumulation characteristics of the second member of Sinian Dengying Formation in the north slope of central Sichuan paleo-uplift [J]. Lithologic Reservoirs, 2022, 34(5): 130-138.
[7] WANG Maozhen, WU Kui, GUO Tao, HUI Guanzhou, HAO Yiwei. Reservoir characteristics and controlling factors of the second member of Paleogene Shahejie Formation in southeastern margin of Liaodong Sag [J]. Lithologic Reservoirs, 2022, 34(4): 66-78.
[8] ZHANG Yuye, GAO Jianwu, ZHAO Jingzhou, ZHANG Heng, WU Heyuan, HAN Zaihua, MAO Zhaorui, YANG Xiao. Diagenesis and pore evolution of Chang 6 tight sandstone reservoir in southeastern Ordos Basin [J]. Lithologic Reservoirs, 2021, 33(6): 29-38.
[9] ZHAO Jun, HAN Dong, HE Shenglin, TANG Di, ZHANG Tao. Identification of fluid properties of low contrast reservoir based on water-gas ratio calculation [J]. Lithologic Reservoirs, 2021, 33(4): 128-136.
[10] HE Xuquan, HUANG Dong, ZHAO Ailin, LI Yucong. Well-logging evaluation index system of shale oil and gas reservoir of Da'anzhai member in central Sichuan Basin [J]. Lithologic Reservoirs, 2021, 33(3): 129-137.
[11] ZHU Suyang, LI Dongmei, LI Chuanliang, LI Huihui, LIU Xiongzhi. Re-discussion on principle of constant porosity during primary deformation of rock [J]. Lithologic Reservoirs, 2021, 33(2): 180-188.
[12] NING Congqian, ZHOU Mingshun, CHENG Jie, SU Rui, HAO Peng, WANG Min, PAN Jingli. Application of 2D NMR logging in fluid identification of glutenite reservoir [J]. Lithologic Reservoirs, 2021, 33(1): 267-274.
[13] REN Jie. Conventional logging evaluation method for carbonate fractured reservoir [J]. Lithologic Reservoirs, 2020, 32(6): 129-137.
[14] YU Yan, ZHOU Linlang, GAN Xiaofei, HU Yan, GAN Wenjin, DENG Zhuang. A triple-porosity flow model and its nonlinear flow characteristics with considering quadratic pressure gradient [J]. Lithologic Reservoirs, 2020, 32(5): 143-150.
[15] CAO Xusheng, HAN Yun, ZHANG Jizhuo, LUO Zhiwei. Influence of imbibition on the development of fractured low permeability conglomerate reservoir: a case stuey from Urho Formation in Mahu oilfield [J]. Lithologic Reservoirs, 2020, 32(4): 155-162.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] PANG Xiongqi,CHEN Dongxia, ZHANG Jun. Concept and categorize of subtle reservoir and problems in its application[J]. Lithologic Reservoirs, 2007, 19(1): 1 -8 .
[2] LEI Bianjun, ZHANG Ji,WANG Caili,WANG Xiaorong, LI Shilin, LIU Bin. Control of high r esolution sequence str atigr aphy on microfacies and reservoir s: A case from the upper Ma 5 member in Tong 5 wellblock, Jingbian Gas Field[J]. Lithologic Reservoirs, 2008, 20(1): 1 -7 .
[3] YANG Jie,WEI Pingsheng, LI Xiangbo. Basic concept, content and research method of petroleum seismogeology[J]. Lithologic Reservoirs, 2010, 22(1): 1 -6 .
[4] WANG Yan-qi1,HU Min-yi1,LIU Fu-yan1,WANG Hui1,HU Zhi-hua1,2. [J]. LITHOLOGIC RESERVOIRS, 2008, 20(3): 44 -48 .
[5] DAI Liming, LI Jianping, ZHOU Xinhuai, CUI Zhongguo, CHENG Jianchun. Depositional system of the Neogene shallow water delta in Bohai Sea area[J]. Lithologic Reservoirs, 2007, 19(4): 75 -81 .
[6] DUAN Youxiang, CAO Jing, SUN Qifeng. Application of auto-adaptive dip-steering technique to fault recognition[J]. Lithologic Reservoirs, 2017, 29(4): 101 -107 .
[7] HUANG Long, TIAN Jingchun, XIAO Ling, WANG Feng. Characteristics and evaluation of Chang 6 sandstone reservoir of Upper Triassic in Fuxian area, Ordos Basin[J]. Lithologic Reservoirs, 2008, 20(1): 83 -88 .
[8] YANG Shiwei, LI Jianming. Characteristics and geological significance of seismites[J]. Lithologic Reservoirs, 2008, 20(1): 89 -94 .
[9] LI Chuanliang, TU Xingwan. Two types of stress sensitivity mechanisms for reservoir rocks:Being favorable for oil recovery[J]. Lithologic Reservoirs, 2008, 20(1): 111 -113 .
[10] LI Jun, HUANG Zhilong, LI Jia, LIU Bo. The pool-forming pattern in the condition of arching in the southeast uplift in Songliao Basin[J]. Lithologic Reservoirs, 2007, 19(1): 57 -61 .
TRENDMD: