Lithologic Reservoirs ›› 2021, Vol. 33 ›› Issue (2): 155-162.doi: 10.12108/yxyqc.20210216
• OIL AND GAS FIELD DEVELOPMENT • Previous Articles Next Articles
WANG Fuyong1, YANG Kun2
CLC Number:
[1] 徐立研, 王胡振, 张立韧, 等. 中国致密油研究现状及发展趋势. 当代化工, 2017, 46(1):86-88. XU L Y, WANG H Z, ZHANG L R, et al. Research status and development trend of tight oil in China. Contemporary Chemical Industry, 2017, 46(1):86-88. [2] 慎迪. 中美致密油勘探开发对比与启示. 云南化工, 2018, 45(3):87. SHEN D. Comparison and enlightenment of tight oil exploration and development between China and America. Yunnan Chemical Technology, 2018, 45(3):87. [3] 刘淑波. 致密砂岩岩心纳米级孔喉结构分布特征研究. 中国石油大学胜利学院学报, 2018, 32(2):21-23. LIU S B. Research on the distribution characteristics of nanometer pore throat structure in tight sandstone core. Journal of Shengli College China University of Petroleum, 2018, 32(2):21-23. [4] 杜金虎, 何海清, 杨涛, 等. 中国致密油勘探进展及面临的挑战. 中国石油勘探, 2014(1):1-9. DU J H, HE H Q, YANG T, et al. Progress in China's tight oil exploration and challenges. China Petroleum Exploration, 2014, 19(1):1-9. [5] 师煜涵. 基于核磁共振研究压裂液在长7储层中的渗吸作用. 西安:西安石油大学, 2018. SHI Y H. Study on fracturing fluid's imbibition of chang-7 source based on nuclear magnetic resonance. Xi'an:Xi'an Shiyou University, 2018. [6] MIRZAEI-PAIAMAN A, MASIHI M, STANDNES D C. An analytic solution for the frontal flow period in 1d counter-current spontaneous imbibition into fractured porous media including gravity and wettability effects. Transport in Porous Media, 2011, 89(1):49-62. [7] CAI J, YU B, ZOU M, et al. Fractal characterization of spontaneous co-current imbibition in porous media. Energy & Fuels, 2010, 24(3):1860-1867. [8] WANG X, SHENG J J. Spontaneous imbibition analysis in shale reservoirs based on pore network modeling. Journal of Petroleum Science and Engineering, 2018, 169:663-672. [9] 刘秀婵, 陈西泮, 刘伟, 等. 致密砂岩油藏动态渗吸驱油效果影响因素及应用. 岩性油气藏, 2019, 31(5):114-120. LIU X C, CHEN X P, LIU W, et al. Influencing factors of dynamic imbibition displacement effect in tight sandstone reservoir and application. Lithologic Reservoirs, 2019, 31(5):114-120. [10] 李斌会, 付兰清, 董大鹏, 等. 松辽盆地北部致密砂岩高温高压吞吐渗吸实验. 特种油气藏, 2018, 25(1):1-7. LI B H, FU L Q, DONG D P, et al. High temperature-pressure huff-puff imbibition experiment in the tight sandstone reservoir of northern Songliao Basin. Special Oil and Gas Reservoirs, 2018, 25(1):1-7. [11] 李洪, 李治平, 王香增, 等. 基于喉道分布特征的致密砂岩渗吸模型. 科学技术与工程, 2018, 18(13):50-54. LI H, LI Z P, WANG X Z, et al. Imbibition model of tight sandstone based on distribution characteristics of roar. Science Technology and Engineering, 2018, 18(13):50-54. [12] 谷潇雨, 王朝明, 蒲春生, 等. 裂缝性致密油藏水驱动态渗吸特征实验研究:鄂尔多斯盆地富县地区长8储层为例. 西安石油大学学报(自然科学版), 2018, 33(3):37-44. GU X Y, WANG C M, PU C S, et al. Experimental study on dynamic imbibition characteristics of fractured tight sandstone reservoir during water flooding:an example from Chang 8 reservoir of Fuxian area in Ordos Basin. Journal of Xi'an Shiyou University(Natural Science Edition), 2018, 33(3):37-44. [13] 李爱芬, 何冰清, 雷启鸿, 等. 界面张力对低渗亲水储层自发渗吸的影响. 中国石油大学学报(自然科学版), 2018, 42(4):67-74. LI A F, HE Q B, LEI Q H, et al. Influence of interfacial tension on spontaneous imbibition in low-permeability water-wet reservoirs. Journal of China University of Petroleum(Edition of Natural Science), 2018, 42(4):67-74. [14] XU D, BAI B, WU H, et al. Mechanisms of imbibition enhanced oil recovery in low permeability reservoirs:Effect of IFT reduction and wettability alteration. Fuel, 2019, 244:110-119. [15] MENG Q, LIU H, WANG J. A critical review on fundamental mechanisms of spontaneous imbibition and the impact of boundary condition, fluid viscosity and wettability. Advances in GeoEnergy Research, 2017, 1(1):1-17. [16] 濮御, 王秀宇, 濮玲. 静态渗吸对致密油开采效果的影响及其应用. 石油化工高等学校学报, 2016, 29(3):23-27. PU Y, WANG X Y, PU L. Effect of spontaneous imbibition on tight reservoirs. Journal of Petrochemical University, 2016, 29(3):23-27. [17] 于馥玮, 苏航. 中国致密油特征与开发思路探索. 当代化工, 2015, 44(7):1550-1552. YU F W, SU H. Characteristics and development technique research of tight oil in China. Contemporary Chemical Industry, 2015, 44(7):1550-1552. [18] 印森林, 陈恭洋, 陈玉琨, 等. 砂砾岩储层孔隙结构模态控制下的剩余油分布-以克拉玛依油田七东1区克下组为例. 岩性油气藏, 2018, 30(5):91-102. YIN S L, CHEN G Y, CHEN Y K, et al. Control effect of pore structure modality on remaining oil in glutenite reservoir:a case from lower Karamay Formation in block Qidong 1 of Karamay Oilfield. Lithologic Reservoirs, 2018, 30(5):91-102. [19] 张新旺, 郭和坤, 李海波. 基于核磁共振致密油储层渗吸驱油实验研究. 科技通报, 2018, 34(8):35-40. ZHANG X W, GUO H K, LI H B. Experimental study on imbibition oil displacement of tight oil reservoir using NMR technology. Bulletin of Science and Technology, 2018, 34(8):35-40. [20] 濮御, 王秀宇, 杨胜来. 利用NMRI技术研究致密储层静态渗吸机理. 石油化工高等学校学报, 2017(1):45-48. PU Y, WANG X Y, YANG S L. Research on spontaneous imbibition mechanism of tight oil reservoirs using NMR method. Journal of Petrochemical University, 2017, 30(1):45-48. [21] 韦青,李治平,王增香, 等. 裂缝性致密砂岩储层渗吸机理及影响:鄂尔多斯盆地吴起地区长8储层为例.油气地质与采收率, 2016, 4(23):102-107. WEI Q, LI Z P, WANG X Z, et al. Mechanism and influence factors of imbibition in fractured tight sandstone reservoir:an example from Chang 8 reservoir of Wuqi area in Ordos Basin. Petroleum Geology and Recovery Efficiency, 20164(23):102-107. [22] 顾雅頔, 喻高明, 李桂姗. 低渗致密砂岩储层孔隙结构特征及自发渗吸实验. 科学技术与工程, 2019, 19(32):139-145. GU Y D, YU G M,LI G S. Experimental of pore structure and spontaneous imbibition of low permeability tight sandstone reservoirs. Science Technology and Engineering, 2019, 19(32):139-145. [23] 杨柳, 鲁晓兵, 葛洪魁, 等. 致密储层渗吸特征与孔径分布的关系. 科学技术与工程, 2019, 19(16):106-111. YANG L, LU X B, GE H K, et al. The relationship between imbibition characteristics and pore size distribution. Science Technology and Engineering,2019, 19(16):106-111. [24] WANG F,ZHAO J. A mathematical model for co-current spontaneous water imbibition into oil-saturated tight sandstone:Upscaling from pore-scale to core-scale with fractal approach. Journal of Petroleum Science and Engineering, 2019, 178:376-388. [25] 杨胜来. 油层物理学.北京:石油工业出版社, 2004. YANG S L. Reservoir physics. Beijing:Petroleum Industry Press, 2004. [26] WANG F, YANG K, YOU J, et al. Analysis of pore size distribution and fractal dimension in tight sandstone with mercury intrusion porosimetry. Results in Physics, 2019, 13:102283. |
|