Lithologic Reservoirs ›› 2021, Vol. 33 ›› Issue (4): 76-84.doi: 10.12108/yxyqc.20210408

• PETROLEUM GEOLOGY • Previous Articles     Next Articles

Quantitative evaluation of natural gas diffusion loss rate: A case study of Su-X block in Sulige gas field

LI Zhiyuan1, YANG Renchao1, ZHANG Ji2, WANG Yi2, YANG Tebo2, DONG Liang1   

  1. 1. College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China;
    2. Research Institute of Exploration and Development, PetroChina Changqing Oilfield Company, Xi'an 710071, China
  • Received:2020-11-25 Revised:2021-01-18 Online:2021-08-01 Published:2021-08-06

Abstract: Natural gas diffusion loss rate is of great significance in quantitative evaluation of the impact of naturalgas diffusion on gas reservoir destruction. To obtain a relatively mature quantitative evaluation method,a geological model of natural gas diffusion of terrigenous clastic gas reservoir in Sulige gas field is established based on diffusion time,rock diffusion coefficient,concentration gradient,gas-bearing area and hydrocarbon expulsion intensity of source rock,and a set of quantitative evaluation method for natural gas diffusion loss rate of terrigenous clastic gas reservoir is formed. The research ideas are as follows: Firstly,the hydrocarbon generation intensity is calculated based on the data of source rock thickness and density,original organic carbon recovery coefficient,residual organic carbon content and gas hydrocarbon yield of original organic matter. Secondly,the hydrocarbon generation intensity is multiplied by the hydrocarbon expulsion coefficient to obtain the hydrocarbon expulsion intensity. Thirdly,according to Fick's first law,the formula for calculating the natural gas diffusion loss is derived,and the natural gas diffusion loss amount is calculated based on the formula,then the natural gas diffusion loss amount divide the gas-bearing area to obtain the natural gas diffusion loss intensity. Finally,the diffusion loss intensity of natural gas divide the hydrocarbon expulsion intensity of source rock to obtain the natural gas diffusion loss rate. Based on this calculation method,the gas diffusion loss rate of Su-X block in Sulige gas field is quantitatively evaluated. It is concluded that the gas diffusion loss rate in this area is mostly between 9.7% and 17.5%. The result shows that the natural gas diffusion loss rate is low and the diffusion loss of natural gas has little damage to gas reservoir. The results are in agreement with the geological reserves and development data of Sulige gas field,which indicate that the calculation method is suitable for the quantitative study of natural gas diffusion loss rate of terrigenous clastic gas reservoir.

Key words: gas reservoir, natural gas, diffusion loss rate, quantitative evaluation, hydrocarbon expulsion intensity, Sulige gas field, Ordos Basin

CLC Number: 

  • TE122.1
[1] 付广, 吕延防.天然气扩散源类型及扩散特征.天然气地球科学, 1999, 10(3/4):43-48. FU G, LYU Y F. Types and diffusion characteristics of natural gas diffusion source. Natural Gas Geoscience, 1999, 10(3/4):43-48.
[2] 付广, 吕延防.大庆长垣以东地区深层天然气扩散系统及损失量研究.石油勘探与开发, 1999, 26(2):101-104. FU G, LYU Y F. The diffusion system and losing amount of gas in deep formation east to the Daqing placanticline. Petroleum Exploration and Development, 1999, 26(2):101-104.
[3] 孙英杰, 付广, 杨勉.天然气扩散系统及扩散损失量研究.天然气工业, 2003, 23(6):64-67. SUN Y J, FU G, YANG M. Research on natural gas diffusion system and diffusion losing amount. Natural Gas Industry, 2003, 23(6):64-67.
[4] 房德权, 宋岩, 马忠宝. 天然气扩散模型及彩25井巴山组油气藏天然气扩散量计算. 中国科学D辑:地球科学, 2000, 30(5):486-492. FANG D Q, SONG Y, MA Z B. Natural gas diffusion model and calculation of gas diffusion in Bashan Formation of well Cai25. Science in China Series D:Earth Sciences, 2000, 30(5):486-492.
[5] 付晓飞, 付广, 李椿, 等.松辽盆地北部主要烃源岩天然气扩散损失量估算.新疆石油地质, 2003, 24(6):565-568. FU X F, FU G, LI C, et al. Estimation of gas diffusion loss amount in main source rocks of northern Songliao Basin. Xinjiang Petroleum Geology, 2003, 24(6):565-568.
[6] 王文广, 高宁.滨北地区源岩天然气扩散损失量的估算.大庆石油学院学报, 2005, 29(4):1-3. WANG W G, GAO N. Estimation of loss of gas diffusion from sourcerock in Binbei region. Journal of Daqing Petroleum Institute, 2005, 29(4):1-3.
[7] 王民, 郭晓博, 薛海涛, 等.多套源岩天然气扩散损失量评价:以松辽盆地北部浅层气源岩为例.石油与天然气地质, 2009, 30(2):203-209. WANG M, GUO X B, XUE H T, et al. Assessment of natural gas diffusion loss from multiple source rocks:An example from shallow gas source rocks in the northern Songliao Basin. Oil & Gas Geology, 2009, 30(2):203-209.
[8] 谢舟, 卢双舫, 于玲, 等.泥质气源岩层内天然气扩散损失量评价:以黔南坳陷黄页1井九门冲组页岩为例. 矿物学报, 2014, 34(1):137-143. XIE Z, LU S F, YU L, et al. Assessment of natural gas loss from mudstone gas source rocks:An example from Jiumenchong Formation of Huangye 1 Well, Lower Cambrian, Southern Guizhou Sag. Acta Mineralogica Sinica, 2014, 34(1):137-143.
[9] 高洪峰.松辽盆地北部主要烃源岩天然气扩散损失量估算. 大庆:大庆石油学院, 2003. GAO H F. Estimation of natural gas diffusion loss of main source rocks in northern Songliao Basin. Daqing:Daqing Petroleum Institute, 2003.
[10] 郝石生, 黄志龙, 高耀斌.轻烃扩散系数的研究及天然气运聚动平衡原理.石油学报, 1991, 12(3):17-24. HAO S S, HUANG Z L, GAO Y B. A study of the diffusion of light hydrocarbon and the dynamic equilibrium principle in the migration and accumulation of natural gas. Acta Petrolei Sinica, 1991, 12(3):17-24.
[11] 李明诚, 李伟.利用平衡浓度研究天然气的扩散:扩散量模拟的一种新方法.天然气工业, 1996, 16(1):1-4. LI M C, LI W. A study of natural gas diffusion by equilibrium concentration:A new method for diffusion quantitative modelling. Natural Gas Industry, 1996, 16(1):1-4.
[12] 付广, 吕延防.天然气扩散作用及其研究方法.北京:石油工业出版社, 1999. FU G, LYU Y F. Diffusion of natural gas and its research methods. Beijing:Petroleum Industry Press, 1999.
[13] 李海燕, 付广, 彭仕宓.气藏天然气扩散散失量的定量研究. 大庆石油地质与开发, 2001, 20(6):25-27. LI H Y, FU G, PENG S M. Quantitative study on the loss of natural gas diffusion in gas reservoirs. Petroleum Geology & Oil-field Development in Daqing, 2001, 20(6):25-27.
[14] 房德权, 宋岩, 曾凡刚, 等.天然气的扩散模型及扩散量的计算方法.沉积学报, 1998, 16(3):72-74. FANG D Q, SONG Y, ZENG F G, et al. The diffusion model and computation method of diffusion quantification for natural gas. Acta Sedimentologica Sinica, 1998, 16(3):72-74.
[15] 付广, 付晓飞.天然气扩散量的多气源模式估算方法初探. 海相油气地质, 1998, 3(3):54-58. FU G, FU X F. Preliminary approach to multi-source model estimation of natural gas diffusion. Marine Origin Petroleum Geology, 1998, 3(3):54-58.
[16] 付广, 陈章明, 任继红. 天然气扩散损失量估算方法及其应用. 断块油气田, 1999, 6(4):6-9. FU G, CHEN Z M, REN J H. Estimating method and its application of natural gas divergence loss. Fault-Block Oil & Gas Field, 1999,6(4):6-9.
[17] 薛海涛, 李璐璐, 卢双舫. 天然气扩散损失量估算方法探讨. 石油与天然气地质, 2010, 31(3):343-346. XUE H T, LI L L, LU S F. A discussion on methods for estimating diffusion loss of natural gas. Oil & Gas Geology, 2010, 31(3):343-346.
[18] 郑庆华, 刘乔, 梁秀玲, 等. 鄂尔多斯盆地陇东地区长4+5油层组沉积相展布特征.岩性油气藏, 2019, 31(6):26-35. ZHENG Q H, LIU Q, LIANG X L, et al. Sedimentary facies distribution characteristics of Chang 4+5 reservoir in Longdong area, Ordos Basin. Lithologic Reservoirs, 2019, 31(6):26-35.
[19] 党犇. 鄂尔多斯盆地构造沉积演化与下古生界天然气聚集关系研究.西安:西北大学, 2003. DANG B. The tectonic and sedimentary evolution and its relationship to gas accumulation of Lower Paleozoic in Ordos Basin. Xi'an:Northwest University, 2003.
[20] 乔建新, 邓辉, 刘池洋, 等. 鄂尔多斯盆地北部晚古生代沉积-构造格局及物源分析. 西安石油大学学报(自然科学版), 2013, 28(1):12-17. QIAO J X, DENG H, LIU C Y, et al. Sedimentary-tectonic framework and provenance analysis of the Late Paleozoic in the northern Ordos Basin. Journal of Xi'an Shiyou University(Natural Science Edition), 2013, 28(1):12-17.
[21] 贺小元, 刘池阳, 王建强, 等. 鄂尔多斯盆地晚古生代古构造. 古地理学报, 2011, 13(6):677-686. HE X Y, LIU C Y, WANG J Q, et al. Palaeotectonics of the Late Paleozoic in Ordos Basin. Journal of Palaeogeography, 2011, 13(6):677-686.
[22] 郭艳琴, 何子琼, 郭彬程, 等.苏里格气山东南部盒8段致密砂岩储层特征及评价.岩性油气藏, 2019, 31(5):1-11 GUO Y Q, HE Z Q, GUO B C, et al. Reservoir characteristics and evaluation of tight sandstone of He 8 member in southeastern Sulige gas field, Ordos Basin. Lithologic Reservoirs, 2019, 31(5):1-11.
[23] 曹跃, 刘延哲, 陈义国, 等. 鄂尔多斯盆地东韩油区延长组长7-长9油气成藏条件及主控因素.岩性油气藏, 2018, 30(1):30-38. CAO Y, LIU Y Z, CHEN Y G, et al. Hydrocarbon accumulation conditions and main controlling factors of Chang 7-Chang 9 oil reservoirs of Yanchang Formation in Donghan region, Ordos Basin. Lithologic Reservoirs, 2018, 30(1):30-38.
[24] 张成弓. 鄂尔多斯盆地早古生代中央古隆起形成演化与物质聚集分布规律.成都:成都理工大学, 2013. ZHANG C G. Forming evolution and sediments accumulation & distribution regularity of central Paleouplift in Eopaleozoic, Ordos Basin. Chengdu:Chengdu University of Technology, 2013.
[25] 杜江民. 苏里格地区奥陶系马家沟组马五5亚段储层特征及其主控因素研究.西安:西北大学, 2016. DU J M. Study on reservoir characteristics and main controlling factors for Ma55 sub-member of the Ordovician Majiagou Formation in Sulige area. Xi'an:Northwest University, 2016.
[26] 王玥, 郭彦如, 张延玲, 等. 鄂尔多斯盆地东北部山西组层序格架下的砂体成因类型、构型及分布.岩性油气藏, 2018, 30(3):80-91. WANG Y, GUO Y R, ZHANG Y L, et al. Genetic types, configurations and distribution of sand bodies of Shanxi Formation in northeastern Ordos Basin. Lithologic Reservoirs, 2018, 30(3):80-91.
[27] 李龙龙. 鄂尔多斯盆地临兴区块上古生界烃源岩生排烃史与天然气成藏期次研究.北京:中国石油大学(北京), 2018. LI L L. Hydrocarbon generation and expulsion history of source rocks and natural gas accumulation period in the Upper Paleozoic of the Linxing block, Ordos Basin. Beijing:China University of Petroleum(Beijing), 2018.
[28] 李浩. 鄂尔多斯盆地中部上古生界烃源岩研究.西安:西北大学, 2015. LI H. Research of source rocks in Upper Paleozoic, central Ordos Basin. Xi'an:Northwest University, 2015.
[29] 刘俞佐, 石万忠, 刘凯, 等.鄂尔多斯盆地杭锦旗东部地区上古生界天然气成藏模式.岩性油气藏, 2020, 32(3):56-67. LIU Y Z, SHI W Z, LIU K, et al. Natural gas accumulation patterns of Upper Paleozoic in eastern Hangjinqi area, Ordos Basin. Lithologic Reservoirs, 2020, 32(3):56-67.
[30] 王冠男.鄂尔多斯盆地延长探区上古生界烃源岩特征及其与天然气富集之间的关系.非常规油气, 2020, 7(4):23-32. WANG G N. Characteristics of Upper Paleozoic source rocks and its relationship to gas enrichment in Yanchang area of Ordos Basin. Unconventional Oil & Gas, 2020, 7(4):23-32.
[31] 付金华. 鄂尔多斯盆地上古生界天然气成藏条件及富集规律.西安:西北大学, 2004. FU J H. The gas reservoir-forming conditions and accumulation rules of Upper Paleozoic in Ordos Basin. Xi'an:Northwest University, 2004.
[32] 郑冰.中扬子区多源、多期油气成藏地球化学研究.成都:成都理工大学, 2008. ZHENG B. Geochemical study of hydrocarbon accumulations with multiple sources and multiple generation stages in the middle Yangtze area. Chengdu:Chengdu University of Technology, 2008.
[33] 周鑫宇.鄂尔多斯马家沟组烃源岩生烃能力评价.成都:成都理工大学, 2014. ZHOU X Y. The hydrocarbon-generation potential evaluation in Majiagou Group of Ordos Basin. Chengdu:Chengdu University of Technology, 2014.
[34] 王波. 鄂尔多斯盆地苏里格地区山西组天然气充注能力评价.成都:成都理工大学, 2010. WANG B. Evaluating the gas filling capability of Shanxi Formation in Sulige area of Ordos Basin. Chengdu:Chengdu University of Technology, 2010.
[35] 郑海桥.鄂尔多斯盆地中部上古生界天然气充注能力评价. 成都:成都理工大学, 2016. ZHENG H Q. Gas charging ability evaluation of the Upper Paleozoic Group in the middle of Ordos Basin. Chengdu:Chengdu University of Technology, 2016.
[36] 石昕.塔里木盆地库车坳陷煤成烃地质地球化学特征.北京:石油勘探开发科学研究院, 2000. SHI X. Geological and geochemical characteristics of coal-derived hydrocarbon in Kuche Depression, Tarim Basin. Beijing:Research Institute of Petroleum Exploration and Development, 2000.
[37] 刘冬冬, 陈义才, 王晓飞, 等.鄂尔多斯盆地山西组5#煤岩生烃热模拟研究.非常规油气, 2017, 4(3):44-48. LIU D D, CHEN Y C, WANG X F, et al. Thermal simulation of hydrocarbon generation of 5# coal of Shanxi Formation in Ordos Basin. Unconventional Oil & Gas, 2017, 4(3):44-48.
[38] 杨天宇, 王涵云.岩石中有机质高温高压模拟实验.石油与天然气地质, 1987, 8(4):380-390. YANG T Y, WANG H Y. Simulation of high temperature-high pressure of rock's organic matter. Oil & Gas Geology, 1987, 8(4):380-390.
[39] TISSOT B P. Recent advances in petroleum geochemistry applied to hydrocarbon exploration. AAPG Bulletin, 1984, 68(5):545-563.
[40] 李奕霏.普光地区须家河组天然气资源潜力评价.成都:成都理工大学, 2014. LI Y F. The natural gas resource potential assessment of Xujiahe Formation in Puguang area. Chengdu:Chengdu University of Technology, 2014.
[41] 郝石生, 黄志龙, 杨家琦.天然气运聚平衡及其应用.北京:石油工业出版社, 1994:72-84. HAO S S, HUANG Z L, YANG J Q. Natural gas transport and accumulation balance and its application. Beijing:Petroleum Industry Press, 1994:72-84.
[42] 陈义才, 林杭杰, 唐波, 等.苏里格地区石炭-二叠系天然气充注特点及充注能力.石油与天然气地质, 2011, 32(1):91-97. CHEN Y C, LIN H J, TANG B, et al. Characteristics and potential of gas charging in the Permo-Carboniferous of Sulige region. Oil & Gas Geology, 2011, 32(1):91-97.
[43] 程付启. 天然气藏多源充注与散失的地质地球化学示踪研究.青岛:中国石油大学(华东), 2007. CHENG F Q. Investigation on charging and losing mixed-gases in reservoirs from different source kitchens. Qingdao:China University of Petroleum(East China), 2007.
[44] 吕延防, 王振平.油气藏破坏机理分析.大庆石油学院学报, 2001, 25(3):5-9. LYU Y F, WANG Z P. Mechanism analysis on destruction of oil and gas pools. Journal of Daqing Petroleum Institute, 2001, 25(3):5-9.
[45] 李建民, 付广, 高宇慧.我国大中型气田储量丰度与其扩散散失量之间关系的定量研究.中国石油勘探, 2009(2):41-45. LI J M,FU G,GAO Y H. Quantitative research on correlation between reserves abundance and diffusion loss of gas in large and medium gas fields in China. China Petroleum Exploration, 2009(2):41-45.
[46] 侯科锋, 李进步, 张吉, 等.苏里格致密砂岩气藏未动用储量评价及开发对策.岩性油气藏, 2020, 32(4):115-125. HOU K F, LI J B, ZHANG J, et al. Evaluation and development countermeasures of undeveloped reserves in Sulige tight sandstone gas reservoir. Lithologic Reservoirs, 2020, 32(4):115-125.
[1] YANG Rongjun, PENG Ping, ZHANG Jing, YE Mao, WEN Huaguo. Characteristics and geological significance of Upper Paleozoic paleo-uplift in Fengjie area,Sichuan Basin [J]. Lithologic Reservoirs, 2021, 33(4): 1-9.
[2] XU Ningning, WANG Yongshi, ZHANG Shoupeng, QIU Longwei, ZHANG Xiangjin, LIN Ru. Reservoir characteristics and diagenetic traps of the first member of Permian Xiashihezi Formation in Daniudi gas field,Ordos Basin [J]. Lithologic Reservoirs, 2021, 33(4): 52-62.
[3] MA Qiaoyu, ZHANG Xin, ZHANG Chunlei, ZHOU Heng, WU Zhongyuan. Shear wave velocity prediction based on one-dimensional convolutional neural network [J]. Lithologic Reservoirs, 2021, 33(4): 111-120.
[4] XIANG Xuebing, SIMA Liqiang, WANG Liang, LI Jun, GUO Yuhao, ZHANG Hao. Pore fluid division and effective pore size calculation of shale gas reservoir: A case study of Longtan Formation in Sichuan Basin [J]. Lithologic Reservoirs, 2021, 33(4): 137-146.
[5] XU Fei. Spontaneous imbibition characteristics of fracturing fluid in shale gas reservoir considering chemical osmotic pressure [J]. Lithologic Reservoirs, 2021, 33(3): 145-152.
[6] YAO Haipeng, YU Dongfang, LI Ling, LIN Haitao. Adsorption characteristics of typical coal reservoirs in Inner Mongolia [J]. Lithologic Reservoirs, 2021, 33(2): 1-8.
[7] WEI Qinlian, CUI Gaixia, LIU Meirong, LYU Yujuan, GUO Wenjie. Reservoir characteristics and controlling factors of Permian lower He 8 member in southwestern Ordos Basin [J]. Lithologic Reservoirs, 2021, 33(2): 17-25.
[8] ZHANG Xiaohui, ZHANG Juan, YUAN Jingsu, CUI Xiaoli, MAO Zhenhua. Micro pore throat structure and its influence on seepage of Chang 81 tight reservoir in Nanliang-Huachi area,Ordos Basin [J]. Lithologic Reservoirs, 2021, 33(2): 36-48.
[9] YAN Min, ZHAO Jingzhou, CAO Qing, WU Heyuan, HUANG Yanzhao. Reservoir characteristics of Permian Shihezi Formation in Linxing area,Ordos Basin [J]. Lithologic Reservoirs, 2021, 33(2): 49-58.
[10] LONG Shengfang, WANG Yushan, LI Guoliang, DUAN Chuanli, SHAO Yingming, HE Yongmei, CHEN Lingyun, JIAO Xu. Heterogeneity characteristics of tight reservoir of lower submember of He 8 member in Su 49 block,Sulige gas field [J]. Lithologic Reservoirs, 2021, 33(2): 59-69.
[11] ZHOU Xinping, DENG Xiuqin, LI Shixiang, ZUO Jing, ZHANG Wenxuan, LI Taotao, LIAO Yongle. Characteristics of formation water and its geological significance of lower combination of Yanchang Formation in Ordos Basin [J]. Lithologic Reservoirs, 2021, 33(1): 109-120.
[12] GAO Jixian, SUN Wenju, WU Peng, DUAN Changjiang. Accumulation characteristics of Upper Paleozoic tight sandstone in Shenfu block,northeastern margin of Ordos Basin [J]. Lithologic Reservoirs, 2021, 33(1): 121-130.
[13] KONG Hongxi, WANG Yuanfei, ZHOU Fei, ZHU Jun, CHEN Yangyang, SONG Dekang. Hydrocarbon accumulation conditions in Eboliang structural belt and its exploration implications [J]. Lithologic Reservoirs, 2021, 33(1): 175-185.
[14] XU Yuxuan, DAI Zongyang, HU Xiaodong, XU Zhiming, LI Dan. Geochemical characteristics and geological significance of Shaximiao Formation in northeastern Sichuan Basin: a case study fromWubaochang area [J]. Lithologic Reservoirs, 2021, 33(1): 209-219.
[15] CAO Jiangjun, CHEN Chaobing, LUO Jinglan, WANG Xi. Impact of authigenic clay minerals on micro-heterogeneity of deep water tight sandstone reservoirs: a case study of Triassic Chang 6 oil reservoir in Heshui area,southwestern Ordos Basin [J]. Lithologic Reservoirs, 2020, 32(6): 36-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Dongmei. Determination of reasonable pressure difference for horizontal well test of condensate gas reservoir testing in TH Oilfield[J]. Lithologic Reservoirs, 2007, 19(1): 130 -133 .
[2] LIU Zhen,CHEN Yanpeng,ZHAO Yang,HAO Qi,XU Xiaoming,CHANG Mai. Distribution and controlling factors of hydrocarbon reservoirs in continental fault basins[J]. Lithologic Reservoirs, 2007, 19(2): 121 -127 .
[3] LI Chuanliang. Can not high rate non-Darcy flow take place in low permeability reservoirs?—Reply to Mr Dou Hongen[J]. Lithologic Reservoirs, 2012, 24(6): 17 -19 .
[4] YANG Wei, WANG Xiaowei, BIAN Donghui. Comparison and application of two kinds of converted wave common conversion point binning methods[J]. Lithologic Reservoirs, 2013, 25(6): 95 -97 .
[5] LI Shengjun, GAO Jianhu, YONG Xueshan, WANG Yao, WEI Xinjian. Approximate formula of reflection coefficient for small-scale body[J]. Lithologic Reservoirs, 2014, 26(1): 96 -99 .
[6] MA Chao. Tight sandstone reservoir characteristics and influencing factors of He-1 member of the Lower Shihezi Formation in Dingbei area[J]. LITHOLOGIC RESERVOIRS, 2015, 27(1): 89 -94 .
[7] ZHOU You, LI Zhiping, JING Cheng, GU Xiaoyu, SUN Wei, LI Xiao. Quantitative evaluation of favorable reservoir in ultra-low permeable reservoir based on“petrophysical facies-flow unit”log response: a case study of Chang 6 oil reservoir set in Yanchang Oilfield[J]. Lithologic Reservoirs, 2017, 29(1): 116 -123 .
[8] DIAO Rui, WU Guochen, CUI Qinghui, SHANG Xinmin, RUI Yongjun. Key techniques for surface array microseismic monitoring[J]. Lithologic Reservoirs, 2017, 29(1): 104 -109 .
[9] JIANG Shengling, WANG Shengxiu, HONG Keyan, ZHU Liangliang, HU Xiaolan. Accumulation conditions of Lower Paleozoic shale gas and its resources in northeastern Chongqing[J]. Lithologic Reservoirs, 2017, 29(5): 11 -18 .
[10] Carlos Zavala, PAN Shuxin. Hyperpycnal flows and hyperpycnites: Origin and distinctive characteristics[J]. Lithologic Reservoirs, 2018, 30(1): 1 -18 .
TRENDMD: