Lithologic Reservoirs ›› 2021, Vol. 33 ›› Issue (5): 148-154.doi: 10.12108/yxyqc.20210514
• OIL AND GAS FIELD DEVELOPMENT • Previous Articles Next Articles
WANG Jingyi, ZHOU Zhijun, WEI Huabin, CUI Chunxue
CLC Number:
[1] 邹才能, 朱如凯, 白斌, 等. 中国油气储层中纳米孔首次发现及其科学价值. 岩石学报, 2011, 27(6):1857-1864. ZOU C N, ZHU R K, BAI B, et al. The first discovery of nanopores in oil and gas reservoirs in China and its scientific value. Acta Petrologica Sinica, 2011, 27(6):1857-1864. [2] 邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策. 石油勘探与开发, 2013, 40(1):14-26. ZOU C N, YANG Z, CUI J W, et al. Formation mechanism, geological characteristics and development countermeasures of shale oil. Petroleum Exploration and Development, 2013, 40(1):14-26. [3] 刘毅, 陆正元, 戚明辉, 等.渤海湾盆地沾化凹陷沙河街组页岩油微观储集特征. 石油实验地质, 2017, 39(2):180-185. LIU Y, LU Z Y, QI M H, et al. Microscopic characteristics of shale oil reservoirs in Shahejie Formation in Zhanhua Sag, Bohai Bay Basin. Petroleum Geology & Experiment, 2017, 39(2):180-185. [4] 许长福, 刘红现, 钱根宝, 等. 克拉玛依砾岩储集层微观水驱油机理. 石油勘探与开发, 2011, 38(6):725-732. XU C F, LIU H X, QIAN G B, et al. Micro water flooding mechanism of Karamay conglomerate reservoir. Petroleum Exploration and Development, 2011, 38(6):725-732. [5] 郝乐伟, 王琪, 唐俊. 储层岩石微观孔隙结构研究方法与理论综述. 岩性油气藏, 2013, 25(5):123-128. HAO L W, WANG Q, TANG J. Research method and theory of reservoir rock micro pore structure. Lithologic Reservoirs, 2013, 25(5):123-128. [6] ZHOU S W, YAN G, XUE H Q, et al. 2D and 3D nanopore characterization of gas shale in Longmaxi Formation based on FIB-SEM. Marine and Petroleum Geology, 2016, 73:174-180. [7] 陶军, 姚军, 赵秀才. 利用IRIS Explorer数据可视化软件进行孔隙级数字岩心可视化研究. 石油天然气学报, 2006, 28(5):51-53. TAO J, YAO J, ZHAO X C. Research on pore-level digital core visualization using IRIS Explorer data visualization software. Journal of Oil and Gas Technology, 2006, 28(5):51-53. [8] BLUNT M. Flow in porous media-pore-network models and multiphase flow. Current Opinion in Colloids and Interface Science, 2001, 6(3):197-207. [9] FATT I. Capillarity-permeability:The network model of porous Media -I. Capillary pressure characteristics. AIME 207, 1957:144-159. [10] BLUNT M J, JACKSON M D, PIRI M, et al. Detailed physics, predictive capabilities and macroscopic consequences for porenetwork models of multiphase flow. Advances in Water Resources, 2002, 25(8/12):1069-1089. [11] WANG H, WU W, CHEN T, et al. Pore structure and fractal analysis of shale oil reservoirs:A case study of the Paleogene Shahejie Formation in the Dongying Depression, Bohai Bay, China. Journal of Petroleum Science and Engineering, 2019, 177:711-723. [12] 高亚军, 姜汉桥, 王硕亮, 等. 基于Level set方法的微观水驱油模拟分析. 中国海上油气, 2016, 28(6):59-65. GAO Y J, JIANG H Q, WANG S L, et al. Simulation analysis of microscopic water-oil displacement based on Level set method. China Offshore Oil and Gas, 2016, 28(6):59-65. [13] 冯其红, 赵蕴昌, 王森, 等. 基于相场方法的孔隙尺度油水两相流体流动模拟. 计算物理, 2020, 37(4):439-447. FENG Q H, ZHAO Y C, WANG S, et al. Pore scale oil-water two-phase flow simulation based on phase field method. Computational Physics, 2020, 37(4):439-447. [14] 俞启泰. 关于剩余油研究的探讨. 石油勘探与开发, 1997, 24(2):46-50. YU Q T. Discussion on remaining oil research. Petroleum Exploration and Development, 1997, 24(2):46-50. [15] 方辉煌, 桑树勋, 刘世奇, 等. 基于微米焦点CT技术的煤岩数字岩石物理分析方法:以沁水盆地伯方3号煤为例. 煤田地质与勘探, 2018, 46(5):167-174. FANG H H, SANG S X, LIU S Q, et al. Digital petrophysical analysis method of coal petrography based on micro focus CT technology:A case study of Bofang No.3 Coal in Qinshui Basin. Coalfield Geology and Exploration, 2018, 46(5):167-174. [16] DONG H. Micro-CT imaging and pore network extraction. London:Imperial College, 2007. [17] 王春生, 刘洋, 孙启冀, 等. 基于数字岩心技术研究低渗砂岩渗流特征. 物探化探计算技术, 2017, 39(4):573-578. WANG C S, LIU Y, SUN Q J, et al. Study on seepage characteristics of low permeability sandstone based on digital core technology. Geophysical and Geochemical Calculation Technology, 2017, 39(4):573-578. [18] 任晓霞, 李爱芬, 王永政, 等. 致密砂岩储层孔隙结构及其对渗流的影响:以鄂尔多斯盆地马岭油田长8储层为例. 石油与天然气地质, 2015, 36(5):774-779. REN X X, LI A F, WANG Y Z, et al. Pore structure of tight sandstone reservoir and its influence on seepage:Taking the Chang 8 reservoir in Maling Oilfield in Ordos Basin as an example. Oil & Gas Geology, 2015, 36(5):774-779. [19] 王平全, 陶鹏, 刘建仪, 等.基于数字岩心的低渗透率储层微观渗流和电传导数值模拟.测井技术, 2017, 41(4):389-393. WANG P Q, TAO P, LIU J Y, et al. Numerical simulation of micro seepage and electrical conductivity in low permeability reservoir based on digital core. Logging Technology, 2017, 41(4):389-393. [20] 吴丰, 姚聪, 丛林林, 等. 岩石气水两相渗流的玻璃刻蚀驱替实验与有限元数值模拟对比. 岩性油气藏, 2019, 31(4):121-132. WU F, YAO C, CONG L L, et al. Comparison of glass etching displacement experiment and finite element numerical simulation for gas-water two-phase seepage in rocks. Lithologic Reservoirs, 2019, 31(4):121-132. [21] 宋明明, 韩淑乔, 董云鹏, 等. 致密砂岩储层微观水驱油效率及其主控因素. 岩性油气藏, 2020, 32(1):135-143. SONG M M, HAN S Q, DONG Y P, et al. Microscopic water flooding efficiency and main controlling factors of tight sand stone reservoir. Lithologic Reservoirs, 2020, 32(1):135-143. [22] 赵丁丁, 孙卫, 杜堃, 等. 特低-超低渗透砂岩储层微观水驱油特征及影响因素:以鄂尔多斯盆地马岭油田长81储层为例. 地质科技情报, 2019, 38(3):157-164. ZHAO D D, SUN W, DU K, et al. Micro water flooding characteristics and influencing factors of ultra-low permeability sandstone reservoir:A case study of Chang 81 reservoir in Maling oilfield, Ordos Basin. Geological Science and Technology Information, 2019, 38(3):157-164. [23] 何文祥, 杨亿前, 马超亚. 特低渗透率储层水驱油规律实验研究. 岩性油气藏, 2010, 22(4):109-115. HE W X, YANG Y Q, MA C Y. Experimental study on waterflooding in ultra-low permeability reservoirs. Lithologic Reservoirs, 2010, 22(4):109-115. |
|