Lithologic Reservoirs ›› 2021, Vol. 33 ›› Issue (6): 93-101.doi: 10.12108/yxyqc.20210610

• PETROLEUM GEOLOGY • Previous Articles     Next Articles

Karst model of Paleozoic carbonate buried hill in No. 2 fault zone of Nanpu Sag

TIAN Xiaoping, ZHANG Wen, ZHOU Liande, SHEN Xiaoxiu, GUO Wei   

  1. Tianjin Branch of CNOOC Limited, Tianjin 300459, China
  • Received:2021-03-05 Revised:2021-04-30 Online:2021-12-01 Published:2021-11-25

Abstract: The Paleozoic buried hill in Nanpu Sag is an important target for oil and gas exploration and evaluation in Bohai Sea. In order to study the karst model of Paleozoic carbonate buried hill in No.2 fault zone of Nanpu Sag, based on core observation, thin section identification, logging analysis, structural evolution, karst evolution model, combined with paleogeomorphology characteristics, the differences of karst models in each block were comprehensively analyzed. The results show that: (1) the lithology of karst reservoir is limestone and dolomite, with the characteristics of dual pore medium. The connectivity of matrix pores is poor, and fractures play a key role in the reservoir space. They can communicate and dredge the micropores and dissolved pores developed along the fractures are important reservoir spaces. (2) The buried hill karst reservoir mainly experienced supergene karstification and burial cementation. The supergene karstification was affected by the Indosinian-Early Yanshanian thrust folding, forming the current structural pattern and fault system, controlling the development and distribution of karst reservoir. On the other hand, the burial cementation in the Middle-Late Yanshanian-Himalayan period is mainly manifested as the filling of the fracture cavity reservoir space formed earlier by surface water and formation water, which is the destructive effect in the process of karst reservoir formation. The intensity of karstification is controlled by paleogeomorphology and faults. According to the paleogeomorphic morphology and karstification intensity, karst Highlands, karst slope areas and karst depressions are divided. The differences in the development degree of karst reservoirs between different blocks and within the same block are mainly caused by the distance to the fault, the position of paleogeomorphology and the steep and gentle slope. (3) The intensity of karstification is controlled by paleogeomorphology and faults. According to the morphology of paleogeomorphology and the intensity of karstification, karst highlands, karst slope areas and karst depressions are divided. The differences in the development degree of karst reservoirs among the blocks are mainly caused by the location of paleogeomorphology and the steep and gentle slope. The gentle slope zone of paleogeomorphology near the faults has the strongest karstification, the best preservation conditions and the most developed karst reservoir, which is a favorable target for oil and gas exploration in the study area. The research results can provide reference for oil and gas exploration in carbonate buried hill.

Key words: paleogeomorphology, karst model, carbonate buried hill, Paleozoic, Nanpu Sag

CLC Number: 

  • TE122.1
[1] 李阳, 金强, 钟建华, 等. 塔河油田奥陶系岩溶分带及缝洞结构特征. 石油学报, 2016, 37(3):289-298. LI Y, JIN Q, ZHONG J H, et al. Karst zonings and fracture-cave structure characteristics of Ordovician reservoirs in Tahe Oilfield, Tarim Basin. Acta Petrolei Sinica, 2016, 37(3):289-298.
[2] 乔桂林, 钱一雄, 曹自成, 等. 塔里木盆地玉北地区奥陶系鹰山组储层特征及岩溶模式.石油实验地质, 2014, 36(4):416-421. QIAO G L, QIAN Y X, CAO Z C, et al. Reservoir characteristics and karst model of Ordovician Yingshan Formation in Yubei area, Tarim Basin. Petroleum Geology & Experiment, 2014, 36(4):416-421.
[3] 张亚, 陈双玲, 张晓丽, 等. 四川盆地茅口组岩溶古地貌刻画及油气勘探意义. 岩性油气藏, 2020, 32(3):44-55. ZHANG Y, CHEN S L, ZHANG X L, et al. Restoration of paleokarst geomorphology of Lower Permian Maokou Formation and its petroleum exploration implication in Sichuan Basin. Lithologic Reservoirs, 2020, 32(3):44-55.
[4] 黄芸, 杨德相, 李玉帮, 等. 冀中坳陷杨税务奥陶系深潜山储层特征及主控因素. 岩性油气藏, 2021, 33(2):70-80. HUANG Y, YANG D X, LI Y B, et al. Reservoir characteristics and main controlling factors of Ordovician Yangshuiwu deep buried hill in Jizhong Depression. Lithologic Reservoirs, 2021, 33(2):70-80.
[5] 兰光志, 江同文, 张廷山, 等. 碳酸盐岩古岩溶储层模式及其特征. 天然气工业, 1996, 16(6):13-17. LAN G Z, JIANG T W, ZHANG T S, et al. Carbonate rock palaeokarst reservoir mode and its characteristics. Natural Gas Industry, 1996, 16(6):13-17.
[6] 王振宇, 李凌, 谭秀成, 等. 塔里木盆地奥陶系碳酸盐岩古岩溶类型识别. 西南石油大学学报, 2008, 30(5):11-16. WANG Z Y, LI L, TAN X C, et al. Types and recognizable indicators of Ordovician carbonate rock karstification in Tarim Basin. Journal of Southwest Petroleum University, 2008, 30(5):11-16.
[7] 王军杰, 王旭, 郑海亮, 等. 靖边气田下古储层岩溶作用差异性分析. 石油化工应用, 2012, 31(7):38-40. WANG J J, WANG X, ZHENG H L, et al. Difference analysis of karstification in lower paleo reservoir of Jingbian Gas Field. Petrochemical Industry Application, 2012, 31(7):38-40.
[8] 胡明义, 付晓树, 蔡全升, 等. 塔北哈拉哈塘地区奥陶系鹰山组-一间房组岩溶储层特征及成因模式. 中国地质, 2014, 41(5):1476-1486. HU M Y, FU X S, CAI Q S, et al. Characteristics and genetic model of karst reservoirs of Ordovician Yingshan-Yijianfang Formation in Halahatang area, northern Tarim Basin. Geology in China, 2014, 41(5):1476-1486.
[9] 李定龙, 贾疏源. 威远构造阳新灰岩岩溶隙洞系统发育演化特征. 石油与天然气地质, 1994, 15(2):151-157. LI D L, JIA S Y. Development and evolution of karst fissurecave system in Yangxin series, Weiyuan structure. Oil & Gas Geology, 1994, 15(2):151-157.
[10] 金振奎, 邹元龙, 蒋春雷, 等. 大港探区奥陶系岩溶储层发育分布控制因素. 沉积学报, 2001, 19(4):530-535. JIN Z K, ZOU Y L, JIANG C L, et al. Distribution and controlling factors of Ordovician karst reservoirs in Dagang region. Acta Sedimentologica Sinica, 2001, 19(4):530-535.
[11] 张仲培, 刘仕林, 杨子玉, 等. 塔里木盆地麦盖提斜坡构造演化及油气地质意义.石油与天然气地质, 2011, 32(6):909-918. ZHANG Z P, LIU S L, YANG Z Y, et al. Tectonic evolution and its petroleum geological significances of the Maigaiti slop, Tarim Basin. Oil & Gas Geology, 2011, 32(6):909-918.
[12] 李阳, 范智慧. 塔河奥陶系碳酸盐岩油藏缝洞系统发育模式与分布规律. 石油学报, 2011, 32(1):101-106. LI Y, FAN Z H. Developmental pattern and distribution rule of the fracture-cavity system of Ordovician carbonate reservoirs in the Tahe Oilfield. Acta Petrolei Sinica, 2011, 32(1):101-106.
[13] 侯方浩, 方少仙, 董兆雄, 等. 鄂尔多斯盆地中奥陶统马家沟组沉积环境与岩相发育特征.沉积学报, 2003, 21(1):106-112. HOU F H, FANG S X, DONG Z X, et al. The developmental characters of sedimentary environments and lithofacies of Middle Ordovician Majiagou Formation in Ordos Basin. Acta Sedimentologica Sinica, 2003, 21(1):106-112.
[14] 罗晓彤, 文华国, 彭才, 等. 巴西桑托斯盆地L油田BV组湖相碳酸盐岩沉积特征及高精度层序划分. 岩性油气藏, 2020, 32(3):68-81. LUO X T, WEN H G, PENG C, et al. Sedimentary characteristics and high-precision sequence division of lacustrine carbonate rocks of BV Formation in L oilfield of Santos Basin, Brazil. Lithologic Reservoirs, 2020, 32(3):68-81.
[15] 王起琮, 赵淑萍, 魏钦廉, 等. 鄂尔多斯盆地中奥陶统马家沟组海相碳酸盐岩储集层特征.古地理学报, 2012, 14(2):229-242. WANG Q C, ZHAO S P, WEI Q L, et al. Marine carbonate reservoir characteristics of the Middle Ordovician Majiagou Formation in Ordos Basin. Journal of Palaeogeography, 2012, 14(2):229-242.
[16] 张家政, 陈松龄, 成永生, 等. 南堡凹陷周边凸起地区碳酸盐岩成岩作用与孔隙演化.石油天然气学报, 2008, 30(2):161-165. ZHANG J Z, CHEN S L, CHENG Y S, et al. Carbonate diagenesis and porosity evolution in adjacent arch of Nanpu Depression. Journal of Oil and Gas Technology, 2008, 30(2):161-165.
[17] 张宝民, 刘静江. 中国岩溶储集层分类与特征及相关的理论问题. 石油勘探与开发, 2009, 36(1):12-28. ZHANG B M, LIU J J. Classification and characteristics of karst reservoirs in China and related theories. Petroleum Exploration and Development, 2009, 36(1):12-28.
[18] 赵莉莉, 郑恒科, 万维, 等. 南堡凹陷古近纪古湖泊学研究. 特种油气藏, 2013, 20(5):57-61. ZHAO L L, ZHENG H K, WAN W, et al. Research on Paleogene paleolimnology in Nanpu Sag. Special Oil & Gas Reservoirs, 2013, 20(5):57-61.
[19] 达丽亚, 张新涛, 徐春强, 等. 渤海海域奥陶系碳酸盐岩岩溶储层特征及主控因素:以石臼坨凸起427构造带为例. 中国海上油气, 2019, 31(4):36-45. DA L Y, ZHANG X T, XU C Q, et al. Characteristics and controlling factors of Ordovician karst reservoirs in Bohai sea:A case study of 427 tectonic belt in Shijiutuo uplift. China Offshore Oil and Gas, 2019, 31(4):36-45.
[20] 汪泽成, 赵文智, 胡素云, 等. 我国海相碳酸盐岩大油气田油气藏类型及分布特征.石油与天然气地质, 2013, 34(2):153-160. WANG Z C, ZHAO W Z, HU S Y, et al. Reservoir types and distribution characteristics of large marine carbonate oil and gas fields in China. Oil & Gas Geology, 2013, 34(2):153-160.
[21] 雷川, 陈红汉, 苏奥, 等. 方解石充填物对于深层古岩溶洞穴保存的独特意义:以塔河地区奥陶系为例. 沉积学报, 2016, 34(5):842-852. LEI C, CHEN H H, SU A, et al. Distinctive significance of calcite fillings for preservation of deep buried karst Paleocaves:Taking the Ordovician system in Tahe area for example. Acta Sedimentologica Sinica, 2016, 34(5):842-852.
[22] 陈丽祥, 牛成民, 李慧勇, 等. 渤海湾盆地渤中21-2构造碳酸盐岩储层发育特征及其控制因素. 油气地质与采收率, 2016, 23(2):16-21. CHEN L X, NIU C M, LI H Y, et al. Carbonate reservoir characteristics and its controlling factors in Bozhong 21-2 structure, Bohai Bay Basin. Petroleum Geology and Oil Recovery, 2016, 23(2):16-21.
[23] 赵春明, 张建民, 李祖兵.渤中28-1油田奥陶系碳酸盐岩储层特征及主控因素. 大庆石油地质与开发, 2017, 36(1):27-34. ZHAO C M, ZHANG J M, LI Z B. Characteristics and main controlling factors for the Ordovician carbonate reservoir in Bozhong 28-1 Oilfield. Petroleum Geology & Oilfield Development in Daqing, 2017, 36(1):27-34.
[24] 易定红, 王建功, 石兰亭, 等. 柴达木盆地英西地区E32碳酸盐岩沉积演化特征. 岩性油气藏, 2019, 31(2):46-55. YI D H, WANG J G, SHI L T, et al. Sedimentary evolution characteristics of E 32 carbonate rocks in Yingxi area, Qaidam Basin. Lithologic Reservoirs, 2019, 31(2):46-55.
[25] 肖林萍. 埋藏条件下碳酸盐岩实验室溶蚀作用模拟的热力学模型与地质勘探方向:以陕甘宁盆地下奥陶统马家沟组第五段为例. 岩相古地理, 1997, 17(4):57-70. XIAO L P. Thermodynamic model for experimental simulation of dissolution of the carbonate rocks in the burial environments:An example from the fifth member of the Lower Devonian Majiagou Formation in the Shaanxi-Gansu-Ningxia Basin. Lithofacies Palaeogeography, 1997, 17(4):57-70.
[1] Guan Yunwen, Su Siyu, Pu Renhai, Wang Qichao, Yan Sujie, Zhang Zhongpei, Chen Shuo, Liang Dongge. Palaeozoic gas reservoir-forming conditions and main controlling factors in Xunyi area,southern Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(6): 77-88.
[2] WANG Tongchuan, CHEN Haoru, WEN Longbin, QIAN Yugui, LI Yuzhuo, WEN Huaguo. Identification and reservoir significance of Carboniferous karst paleogeomorphology in Wubaiti area,eastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(4): 109-121.
[3] NIU Chengmin, HUI Guanzhou, DU Xiaofeng, GUAN Dayong, WANG Bingjie, WANG Qiming, ZHANG Hongguo. Sedimentary model of sublacustrine fan of the third member of Paleogene Dongying Formation and large-scale oilfield discovered in western slope of Liaozhong Sag [J]. Lithologic Reservoirs, 2024, 36(2): 33-42.
[4] DENG Yuan, CHEN Xuan, QIN Jianhua, LI Yingyan, HE Jixiang, TAO Xin, YIN Taiju, GAO Yang. Paleogeomorphology and favorable reservior distribution of the first member of Permian Lucaogou Formation in Jimsar Sag [J]. Lithologic Reservoirs, 2024, 36(1): 136-144.
[5] LUO Beiwei, YIN Jiquan, HU Guangcheng, CHEN Hua, KANG Jingcheng, XIAO Meng, ZHU Qiuying, DUAN Haigang. Characteristics and controlling factors of high porosity and permeability limestone reservoirs of Cretaceous Cenomanian in the western United Arab Emirates [J]. Lithologic Reservoirs, 2023, 35(6): 63-71.
[6] HE Yanbing, XIAO Zhangbo, ZHENG Yangdi, LIU Junyi, YI Hao, ZHAO Qing, ZHANG Yuexia, HE Yong. Hydrocarbon accumulation characteristics of Mesozoic Lufeng 7-9 buried hill in Lufeng 13 subsag transition zone,Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2023, 35(3): 18-28.
[7] YANG Runze, ZHAO Xianzheng, LIU Haitao, LI Hongjun, ZHAO Changyi, PU Xiugang. Hydrocarbon accumulation characteristics and favorable zones prediction in and under source of Paleozoic in Huanghua Depression,Bohai Bay Basin [J]. Lithologic Reservoirs, 2023, 35(3): 110-125.
[8] WEN Wen, YANG Xiyan, XIANG Man, TAO Xiayan, YANG Rong, LI Yang, FAN Jiaxing, PU Baiyu. Characteristics and main controlling factors of oolitic shoal reservoirs of Triassic Feixianguan Formation in eastern Kaijiang-Liangping trough, Sichuan Basin [J]. Lithologic Reservoirs, 2023, 35(2): 68-79.
[9] HUANG Junli, ZHANG Wei, LIU Lihui, CAI Guofu, ZENG Youliang, MENG Qingyou, LIU Hao. Ternary seismic configuration interpretation technology of Paleogene Wenchang Formation in Panyu 4 depression, Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2023, 35(2): 103-112.
[10] HE Chunfeng, ZHANG Xiang, TIAN Jingchun, XIA Yongtao, YANG Yanru, CHEN Jie, WANG Xinyu. Sedimentary facies characteristics and sedimentary model of thin sand bodies of Lower Cretaceous Shushanhe Formation in Xinhe area, northern Tarim Basin [J]. Lithologic Reservoirs, 2023, 35(1): 120-131.
[11] YU Haibo. Tectonic characteristics and favorable exploration zones of Paleozoic in Dongpu Sag [J]. Lithologic Reservoirs, 2022, 34(6): 72-79.
[12] WEI Xin, TANG Jianyun, SONG Hongxia, CHEN Yubao. Geochemical characteristics and hydrocarbon generation potential of Upper Paleozoic source rocks in Ganquan area,Ordos Basin [J]. Lithologic Reservoirs, 2022, 34(6): 92-100.
[13] LIU Yangping, WU Boran, YU Zhongliang, YU Chenglin, WANG Lixin, YIN Yanshu. Reconstruction of 3D geological model of braided river sandstone reservoirs: A case study of Neogene Guantao Formation in Gaoshangpu block,Jidong Oilfield [J]. Lithologic Reservoirs, 2022, 34(4): 159-170.
[14] CHENG Danhua, JIAO Xiarong, WANG Jianwei, ZHUANG Dongzhi, WANG Zhengjun, JIANG Shan. Shale oil reservoir characteristics and significance of the first member of Paleogene Shahejie Formation in Nanpu Sag,Huanghua Depression [J]. Lithologic Reservoirs, 2022, 34(3): 70-81.
[15] MIAO Huan, WANG Yanbin, HE Chuan, LI Jianhong, ZHANG Wei, ZHANG Yujian, GONG Xun. Fault development characteristics and reservoir control in Chengbei fault step zone, Bohai Bay Basin [J]. Lithologic Reservoirs, 2022, 34(2): 105-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Sijing,HUANG Peipei,WANG Qingdong,LIU Haonian,WU Meng,ZOU Mingliang. The significance of cementation in porosity preservation in deep-buried sandstones[J]. Lithologic Reservoirs, 2007, 19(3): 7 -13 .
[2] LIU Zhen,CHEN Yanpeng,ZHAO Yang,HAO Qi,XU Xiaoming,CHANG Mai. Distribution and controlling factors of hydrocarbon reservoirs in continental fault basins[J]. Lithologic Reservoirs, 2007, 19(2): 121 -127 .
[3] DING Chao,GUO Lan,YAN Jifu. Forming conditions of Chang 6 reservoir in Anding area of Zichang Oilfield[J]. Lithologic Reservoirs, 2009, 21(1): 46 -50 .
[4] LI Yanshan,ZHANG Zhansong,ZHANG Chaomo,CHEN Peng. Application of mercury injection data to Chang 6 reservoir classification in Changqing area[J]. Lithologic Reservoirs, 2009, 21(2): 91 -93 .
[5] LUO Peng,LI Guorong,SHI Zejin,ZHOU Dazhi,TANG Hongwei,ZHANG Deming. Analysis of sequence stratigraphy and sedimentary facies of M aokou Formation in southeastern Sichuan[J]. Lithologic Reservoirs, 2010, 22(2): 74 -78 .
[6] ZUO Guoping, TU Xiaolong, XIA Jiufeng. Study on volcanic reservoir types in Subei exploration area[J]. Lithologic Reservoirs, 2012, 24(2): 37 -41 .
[7] WANG Feiyu. Method to improve producing degree of thermal recovery horizontal wells and its application[J]. Lithologic Reservoirs, 2010, 22(Z1): 100 -103 .
[8] YUAN Yunfeng,CAI Ye,FAN Zuochun,JIANG Yiyang,QIN Qirong, JIANG Qingping. Fracture characteristics of Carboniferous volcanic reservoirs in Hongche fault belt of Junggar Basin[J]. Lithologic Reservoirs, 2011, 23(1): 47 -51 .
[9] YUAN Jianying, FU Suotang, CAO Zhenglin, YAN Cunfeng,ZHANG Shuichang, MA Dade. Multi-source hydrocarbon generation and accumulation of plateau multiple petroleum system in Qaidam Basin[J]. Lithologic Reservoirs, 2011, 23(3): 7 -14 .
[10] GENG Yanfei, ZHANG Chunsheng, HAN Xiaofeng, YANG Dachao. Study on formation mechanism of low resistivity gas bearing reservoir in Anyue-Hechuan area[J]. Lithologic Reservoirs, 2011, 23(3): 70 -74 .
TRENDMD: