Lithologic Reservoirs ›› 2021, Vol. 33 ›› Issue (6): 81-92.doi: 10.12108/yxyqc.20210609

• PETROLEUM GEOLOGY • Previous Articles     Next Articles

Paleoenvironment and development model of source rocks of Dongying Formation in Bozhong Sag

YANG Hong1,2, LIU Chenglin1,2, WANG Feilong3, TANG Guomin3, LI Guoxiong1,2, ZENG Xiaoxiang1,2, WU Yuping1,2   

  1. 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China;
    2. College of Geosciences, China University of Petroleum(Beijing), Beijing 102249, China;
    3. Tianjin Brach of CNOOC, Tianjin 300452, China
  • Received:2021-07-15 Revised:2021-08-14 Online:2021-12-01 Published:2021-11-25

Abstract: The source rocks of Dongying Formation are relatively thick in Bozhong Sag. It is of great significance to clarify the characteristics and development model of this set of source rocks for promoting three-dimensional conventional and unconventional hydrocarbon exploration in deep and shallow layers of Bozhong Sag. Organicinorganic geochemical experiments, whole rock-clay and sporo-pollen analysis tests were carried out on the source rock samples to evaluate the quality of the source rock of Dongying Formation in Bozhong Sag. Combined the ratios of Sr/Cu, Mn/Fe and Pr/Ph, Gammacerane index, cycloterpane ratio, carbon isotope and low algal pollen content, the paleoenvironment and paleo-productivity during the formation of Dongying Formation were analyzed, and a unique source rock development model of Dongying Formation was established. The results show that: (1) The mudstone of Dongying Formation is mainly composed of quartz and feldspar, with low content of carbonate minerals and high content of clay minerals(with a mass fraction of 30%). (2) The organic matter abundance in the lower part of the third and second members of Dongying Formation is high, reaching the maturehigh maturity stage, and the organic matter is mainly Ⅱ1-Ⅱ2 type. (3) The paleoclimate of Dongying Formation is warm and humid, the water salinity gradually becomes lighter, and the water depth gradually becomes shallower, from the high water depth of E3d3(70.1 m) to the low water depth of E3d1(26.7 m). The terrestrial intrusion and water oxidation conditions gradually increase, and the paleo-productivity successively is E3d3(high) > E3d2(middle) > E3d1(low). (4) High productivity and reductive preservation conditions dominate the enrichment of organic matter in Dongying Formation, while paleoclimate, water depth, salinity and terrigenous input have indirect effects on the enrichment of organic matters.

Key words: source rocks, paleoenvironment, development model, Dongying Formation, Bozhong Sag

CLC Number: 

  • TE122.2
[1] HAO F, ZHOU X H, ZHU Y M, et al. Lacustrine source rock deposition in response to co-evolution of environments and organisms controlled by tectonic subsidence and climate,Bohai Bay Basin, China. Organic Geochemistry, 2011, 42(4):323-339.
[2] HU T, PANG X Q, JIANG S, et al. Impact of paleosalinity, dilution, redox, and paleoproductivity on organic matter enrichment in a saline lacustrine rift basin:A case study of paleogene organicrich shale in Dongpu depression, Bohai Bay Basin, eastern China. Energy & Fuels, 2018, 32(4):5045-5061.
[3] 刁帆, 邹华耀, 郝芳, 等. 渤海湾盆地廊固凹陷烃源岩特征及其发育模式. 石油与天然气地质, 2014, 35(3):326-335. DIAO F, ZOU H Y, HAO F, et al. Characteristics and depositional models of source rocks in Langgu Sag, Bohai Bay Basin. Oil & Gas Geology, 2014, 35(3):326-335.
[4] 殷杰, 王权, 郝芳, 等. 渤海湾盆地饶阳凹陷沙一下亚段古湖泊环境与烃源岩发育模式. 地球科学, 2017, 42(7):1209-1222. YIN J, WANG Q, HAO F, et al. Palaeolake environment and depositional model of source rocks of the lower submember of Sha 1 in Raoyang Sag, Bohai Bay Basin. Earth Science, 2017, 42(7):1209-1222.
[5] ALGEO T J, MAYNARD J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, 2004, 206(3/4):289-318.
[6] HATCH J R, LEVENTHAL J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian(Missourian) Stark Shale member of the Dennis Limestone, Wabaunsee County,Kansas, U.S. A. Chemical Geology, 1992, 99(1/3):65-82.
[7] PATTERSON J H, RAMSDEN A R, DALE L S, et al. Geochemistry and mineralogical residences of trace elements in oil shales from Julia Creek, Queensland, Australia. Chemical Geology, 1986, 55(1/2):1-16.
[8] 高乔, 王兴志, 朱逸青, 等. 川南地区龙马溪组元素地球化学特征及有机质富集主控因素.岩性油气藏, 2019, 31(4):72-84. GAO Q, WANG X Z, ZHU Y Q, et al. Elemental geochemical characteristics and main controlling factors of organic matter enrichment of Longmaxi Formation in southern Sichuan. Lithologic Reserviors, 2019, 31(4):72-84.
[9] DEMAISON G J, MOORE G T. Anoxic environments and oil source bed genesis. AAPG Bulletin, 1980, 64(8):1179-1209.
[10] POWELL T G. Petroleum geochemistry and depositional setting of lacustrine source rocks. Marine and Petroleum Geology, 1986, 3(3):119-200.
[11] KATZ B J. Controls on distribution of lacustrine source rocks through time. AAPG Memoir 50, 1990:132-139.
[12] 李龙, 张新涛, 徐春强, 等. 渤中凹陷西洼区新近系油气分布特征及"脊-断"联控成藏模式. 中国海上油气, 2019, 31(4):27-35. LI L, ZHANG X T, XU C Q, et al. Neogene hydrocarbons distribution characteristics and "ridge-fault" joint control accumulation mode in western Bozhong Sag, Bohai sea. China Offshore Oil and Gas, 2019, 31(4):27-35.
[13] 谢玉洪, 张功成, 沈朴, 等. 渤海湾盆地渤中凹陷大气田形成条件与勘探方向. 石油学报, 2018, 39(11):1199-1210. XIE Y H, ZHANG G C, SHEN P, et al. Formation condition and exploration direction of large gas field in Bozhong Sag of Bohai Bay Basin. Acta Petrolei Sinica, 2018, 39(11):1199-1210.
[14] 任拥军, 杜雨佳, 郭潇潇, 等. 渤中凹陷古近系优质烃源岩特征及分布. 油气地质与采收率, 2015, 22(1):5-13. REN Y J, DU Y J, GUO X X, et al. Characteristics and distribution of Paleogene high-quality source rocks in Bozhong Sag. Petroleum Geology and Recovery Efficiency, 2015, 22(1):5-13.
[15] 王翔宇. 渤海湾盆地渤中凹陷渐新统东营组三段烃源岩预测及评价. 武汉:长江大学, 2019. WANG X Y. Prediction and evaluation of the source rocks of the third member of the Oligocene Dongying Formation in the Bozhong Sag, Bohai Bay Basin. Wuhan:Yangtze University, 2019.
[16] 张参, 阳宏, 王飞龙, 等. 渤中凹陷南洼东营组烃源岩有机地球化学特征. 海洋地质前沿, 2020, 36(11):35-44. ZHANG C, YANG H, WANG F L, et al. Organic geochemistry of the source rocks in the Dongying Formation of the south Bozhong subsag. Marine Geology Frontiers, 2020, 36(11):35-44.
[17] 庞雄奇, 郭永华, 姜福杰, 等. 渤海海域优质烃源岩及其分布预测. 石油与天然气地质, 2009, 30(4):393-397. PANG X Q, GUO Y H, JIANG F J, et al. High-quality source rocks and their distribution prediction in the Bohai Sea waters. Oil & Gas Geology, 2009, 30(4):393-397.
[18] 徐长贵, 于海波, 王军, 等. 渤海海域渤中19-6大型凝析气田形成条件与成藏特征. 石油勘探与开发, 2019, 46(1):25-38. XU C G, YU H B, WANG J, et al. Formation conditions and accumlation characteristics of Bozhong 19-6 large condensate gas field in offshore Bohai Bay Basin. Petroleum Exploration and Development, 2019, 46(1):25-38.
[19] 谢玉洪. 渤海湾盆地渤中凹陷太古界潜山气藏BZ19-6的气源条件与成藏模式. 石油实验地质, 2020, 42(5):858-866. XIE Y H. Gas resources and accumulation model of BZ19-6 Archean buried-hill large-scale gas reservior in Bozhong Sag, Bohai Bay Basin. Petroleum Geology & Experiment, 2020, 42(5):858-866.
[20] 王德英, 于娅, 张藜, 等. 渤海海域石臼坨凸起大型岩性油气藏成藏关键要素. 岩性油气藏, 2020, 32(1):1-10. WANG D Y, YU Y, ZHANG L, et al. Key factors for reservoir formation of large lithologic reservoirs in Shijiutuo uplift, Bohai Sea. Lithologic Reserviors, 2020, 32(1):1-10.
[21] 王德英, 薛永安, 于海波, 等. 渤中凹陷斜坡类型与新近系油气成藏特征. 中国海上油气, 2019, 31(4):9-18. WANG D Y, XUE Y A, YU H B, et al. Slop types and Neogene hydrocarbon accumulation characteristics of Bozhong Sag in Bohai Sea. China offshore Oil and Gas, 2019, 31(4):9-18.
[22] 黄志龙, 高岗. 石油地质综合研究方法. 北京:石油工业出版社, 2017. HUANG Z L, GAO G. Comprehensive research method of petroleum geology. Beijing:Petroleum Industry Press, 2017.
[23] 任海鹰, 葛运华. 织纳煤田中寨矿区晚二叠世泥岩地球化学特征及沉积环境意义. 中国煤炭地质, 2016, 28(2):7-10. REN H Y, GE Y H. Late Permian mudstone geochemical features and sedimentary enviorment significance in Zhonghai mine area, Zhina Coalfield. Coal Geology of China, 2016, 28(2):7-10.
[24] MORADI A V, SARI A, AKKAYA P. Geochemistry of the Miocene oil shale(Hanili Formation) in the ankr-orum Basin, Central Turkey:Implications for Paleoclimate conditions, source-area weathering,provenance and tectonic setting. Sedimentary Geology, 2016, 341(15):289-303.
[25] AWAN R S, LIU C L, GONG H W, et al. Paleo-sedimentary environment in relation to enrichment of organic matter of Early Cambrian black rocks of Niutitang Formation from Xiangxi area China. Marine and Petroleum Geology, 2020, 112(1):104057.
[26] FEDO C M, NESBITT H W, YOUNG G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 1995, 23(10):921-924.
[27] 马玉贞, 陶明信, 陈发源. 甘肃窑街寺湾沟-炭洞沟红层孢粉组合、地质时代与生态环境. 沉积学报, 1996, 14(1):93-102. MA Y Z, TAO M X, CHEN F Y. The red sporo-pollrn assemblages, geological age and ecological enviornment from SiwangouTandonggou of Yaojie, Gansu. Acta Sedimentologica Sinica, 1996, 14(1):93-102.
[28] 唐领余, 毛礼米, 吕新苗, 等. 第四纪沉积物中重要蕨类孢子和微体藻类的古生态环境指示意义. 科学通报, 2013, 58(20):1969-1983. TANG L Y, MAO L M, LYU X M, et al. Palaeoecological and palaeoenviormental significance of some important spores and micro-algae in Quaternary deposits. Chinese Science Bulletin. 2013, 58(20):1969-1983.
[29] 魏永峰, 赵志强, 林美英, 等. 西昆仑尖山混杂岩带中硅质岩地球化学特征及沉积环境. 新疆地质, 2016, 34(2):197-203. WEI Y F, ZHAO Z Q, LIN M Y, et al. Geochemical characteristics and sedimentary environment of cherts from Jianshan melange belt in West Kunlun. Xinjiang Geology, 2016, 34(2):197-203.
[30] 周洪瑞. 华北地台南部中新元古界层序地层研究. 北京:地质出版社, 1999. ZHOU H R. Study on stratigraphic characteristics of mesoproterozoic in southern North China Platform. Beijing:Geological Publishing House, 1999.
[31] 吴智平, 周瑶琪. 一种计算沉积速率的新方法:宇宙尘埃特征元素法. 沉积学报, 2000, 18(3):395-399. WU Z P, ZHOU Y Q. Using the characteristic elements from meteoritic must in strata to calculate sedimentation rate. Acta Sedimentologica Sinca, 2000, 18(3):395-399.
[32] 范萌萌, 卜军, 赵筱艳, 等. 鄂尔多斯盆地东南部延长组微量元素地球化学特征及环境指示意义. 西北大学学报(自然科学版), 2019, 49(4):633-642. FAN M M, BU J, ZHAO X Y, et al. Geochemical characteristics and environmental implications of trace elements of Yanchang Formation in southeastern Ordos Basin. Journal of Norhwest University(Natural Science Edition), 2019, 49(4):633-642.
[33] 王峰, 刘玄春, 邓秀芹, 等. 鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义. 沉积学报, 2017, 35(6):1265-1273. WANG F, LIU X C, DENG X Q, et al. Geochemical characteristics and environmental implications of trace elements of Zhifang Formation in Ordos Basin. Acta Sedimentologica Sinca, 2017, 35(6):1265-1273.
[34] 毛光周, 刘晓通, 安鹏瑞, 等. 无机地球化学指标在古盐度恢复中的应用及展望. 山东科技大学学报(自然科学版), 2018, 37(1):92-102. MAO G Z, LIU X T, AN P R, et al. Application and outlook of inorganic geochemical indexes in reconstruction of Palaeosalinity. Journal of Shandong University of Science and Technology(Natural Science), 2018, 37(1):92-102.
[35] 李成凤, 肖继风. 用微量元素研究胜利油田东营盆地沙河街组的古盐度. 沉积学报, 1988, 6(4):100-107. LI C F, XIAO J F. The application of trace element to the study on paleosalinities in Shahejie Formation of Dongying Basin Shengli Oilfield. Acta Sedimentologica Sinca, 1998, 6(4):100-107.
[36] PIPER D Z. Seawater as the source of minor elements in black shales, phosphorites and other sedimentary rocks. Chemical Geology, 1994, 114(1/2):95-114.
[37] MURPHY A E, SAGEMAN B B, HOLLANDER D J, et al. Black shale deposition and faunal overturn in the Devonian Appalachian Basin:Clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling. Paleoceanography, 2000, 15(3):280-291.
[38] TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies:An update. Chemical Geology, 2006, 232(1/2):12-32.
[39] 陈建平, 邓春萍, 宋孚庆, 等. 用生物标志物定量计算混合原油油源的数学模型. 地球化学, 2007, 4(2):205-214. CHEN J P, DENG C H, SONG F Q, et al. Mathenmatical calculating model using biomarkers to quantitatively determine relative source proportion of mixed oils.Geochimica, 2007, 4(2):205-214.
[40] 兰蕾, 李友川, 王柯, 等. 一组有效区分渤中凹陷烃源岩的生物标志化合物参数. 石油学报, 2019, 40(1):35-41.LAN L, LI Y C, WANG K, et al. Biomarker parameters for dffectively distinguishing source rocks in Bozhong Sag. Acta Petrolei Sinica, 2019, 40(1):35-41.
[41] EMERSON S R, HUESTED S S. Ocean anoxia and the concentrations of molybdenum and vanadium in seawater. Marine Chemistry, 1991, 34(3/4):177-196.
[42] 李广之, 胡斌, 邓天龙, 等. 微量元素V和Ni的油气地质意义. 天然气地球科学, 2008, 19(1):13-17. LI G Z, HU B, DENG T L, et al. Petroleum geological significance of microelements V and Ni. Natural Gas Geoscience, 2008, 19(1):13-17.
[43] PETERS K E, WALTERS C C, MOLDOWAN J M. The biomarker guide. Beijing:Petroleum Industry Press, 2013.
[44] DEAN W E, GARDNER J V, PIPER D Z. Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin. Geochimica et Cosmochimica Acta, 1997, 61(21):4507-4518.
[45] 刘传联, 徐金鲤. 生油古湖泊生产力的估算方法及应用实例. 沉积学报, 2002, 20(1):144-150. LIU C L, XU J L. Estimation method on productivity of oil-producing lake and a case study. Acta Sedimentologica Sinica, 2002, 20(1):144-150.
[46] PUJOL F, BERNER Z, STUBEN D. Palaeoenvironmental changes at the Frasnian/Famennian boundary in key European sections:Chemostratigraphic constraints. Palaeogeography Palaeoclimatology Palaeoecology, 2006, 240(1/2):120-145.
[47] 尹秀珍. 松辽盆地中部晚白垩世早期古湖泊生产力研究. 北京:中国地质大学(北京), 2008. YIN X Z. Palaeolacustrine peoductivity study of early Late Cretaceous in the central area of Songliao Basin. Beijing:China University of Geosciences(Beijing), 2008.
[48] ALGEO T J, KUWAHARA K, SANO H, et al. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Panthalassic Ocean. Palaeogeography Palaeoclimatology Palaeoecology, 2011, 308(1/2):65-83.
[49] 刘顺喜. 海陆过渡相泥页岩储层特征及其沉积控制机理:以织纳煤田龙潭组为例. 徐州:中国矿业大学(徐州), 2018. LIU S X. Reservoir characteristics and sedimentary control mechanism of the marine-continental transitional mud shale:A case of the Longtan Formation in Zhina Coalfield. Xuzhou:China University of Mining and Technology(CUMT), 2018.
[50] MURRAY R W, LEINEN M, ISERN A R. Biogenic flux of Al to sediment in the central equatorial Pacific Ocean:Evidence for increased productivity during glacial periods. Paleoceanography, 1993, 8(5):651-670.
[51] DYMOND J, COLLIER R. Particulate barium fluxes and their relationships to biological productivity. Deep-Sea Res Ⅱ, 1996, 43(4/6):1283-1308.
[52] PAYTAN A, GRIFFITH E M. Marine barite:Recorder of variations in ocean export productivity. Deep-Sea Research Part Ⅱ, 2007, 54(5/7):687-705.
[53] DEMAISON G J, MOORE G T. Anoxic environments and oil source bed genesis. Organic Geochemistry, 1980, 2(1):9-31.
[54] DOUGLAS W, KIRKLAND, et al. Source-rock potential of evaporitic environment. AAPG Bulletin, 1981, 65(2):181-190.
[55] LATIMER J C, FILIPPELLI G M. Eocene to Miocene terrigenous inputs and export production:geochemical evidence from ODP Leg 177, Site 1090. Palaeogeography Palaeoclimatology Palaeoecology, 2002, 182(3/4):151-164.
[1] RAN Yixuan, WANG Jian, ZHANG Yi. Favorable exploration area and formation condition of bedrock reservoir in the of central paleo-uplift,northern Songliao Basin [J]. Lithologic Reservoirs, 2024, 36(6): 66-76.
[2] QIAO Tong, LIU Chenglin, YANG Haibo, WANG Yifeng, LI Jian, TIAN Jixian, HAN Yang, ZHANG Jingkun. Characteristics and genetic mechanism of condensate oil and gas of the Jurassic Sangonghe Formation in western well Pen-1 sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(6): 169-180.
[3] CHENG Yan, WANG Bo, ZHANG Tongyao, QI Yumin, YANG Jilei, HAO Peng, LI Kuo, WANG Xiaodong. Oil and gas migration characteristics of lithologic reservoirs of Neogene Minghuazhen Formation in Bozhong A-2 area,Bozhong Sag [J]. Lithologic Reservoirs, 2024, 36(5): 46-55.
[4] MOU Feisheng, YIN Xiangdong, HU Cong, ZHANG Haifeng, CHEN Shijia, DAI Linfeng, LU Yifan. Distribution characteristics and controlling factors of tight oil of Triassic Chang 7 member in northern Shaanxi area,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(4): 71-84.
[5] DONG Rou, LI Kun, YIN Jihang, XUE Yuheng, JIANG Tao, XU Guosheng. Spatial-temporal differential evolution model and reservoir control effect of Cenozoic extensional and strike-slip superimposed faults in Bodong Sag [J]. Lithologic Reservoirs, 2024, 36(3): 106-116.
[6] ZHU Kangle, GAO Gang, YANG Guangda, ZHANG Dongwei, ZHANG Lili, ZHU Yixiu, LI Jing. Characteristics of deep source rocks and hydrocarbon accumulation model of Paleogene Shahejie Form ationin Qingshui subsag,Liaohe Depression [J]. Lithologic Reservoirs, 2024, 36(3): 146-157.
[7] CEN Yongjing, LIANG Feng, WANG Lien, LIU Qianyu, ZHANG Xinzhe, DING Xiong. Reservoir accumulation characteristics of the second member of Sinian Dengying Formation in Penglai-Zhongjiang area,Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(2): 89-98.
[8] NIU Chengmin, HUI Guanzhou, DU Xiaofeng, GUAN Dayong, WANG Bingjie, WANG Qiming, ZHANG Hongguo. Sedimentary model of sublacustrine fan of the third member of Paleogene Dongying Formation and large-scale oilfield discovered in western slope of Liaozhong Sag [J]. Lithologic Reservoirs, 2024, 36(2): 33-42.
[9] HONG Guoliang, WANG Hongjun, ZHU Houqin, BAI Zhenhua, WANG Wenwen. Hydrocarbon accumulation conditions and favorable zones of lithologic reservoirs of Miocene Gumai Formation in block J,South Sumatra Basin [J]. Lithologic Reservoirs, 2023, 35(6): 138-146.
[10] LIU Hailei, ZHU Yongcai, LIU Longsong, YIN He, WANG Xueyong, DU Xiaodi. Geological characteristics and exploration potential of shale oil of Permian Lucaogou Formation in hanging wall of Fukang fault zone, Junggar Basin [J]. Lithologic Reservoirs, 2023, 35(4): 90-101.
[11] XUE Nan, SHAO Xiaozhou, ZHU Guangyou, ZHANG Wenxuan, QI Yalin, ZHANG Xiaolei, OUYANG Siqi, WANG Shumin. Geochemical characteristics and formation environment of source rocks of Triassic Chang 7 member in northern Pingliang area,Ordos Basin [J]. Lithologic Reservoirs, 2023, 35(3): 51-65.
[12] DENG Meiling, WANG Ning, LI Xinqi, CHEN Rongtao, LIU Yan, XU Yaohui. Geochemical characteristics and sedimentary environment of source rocks of the third member of Paleogene Shahejie Formation in central Laizhouwan Sag,Bohai Sea [J]. Lithologic Reservoirs, 2023, 35(1): 49-62.
[13] YAN Jianping, LUO Jingchao, SHI Xuewen, ZHONG Guanghai, ZHENG Majia, HUANG Yi, TANG Hongming, HU Qinhong. Fracture development models and significance of Ordovician WufengSilurian Longmaxi shale in Luzhou area,southern Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(6): 60-71.
[14] XIE Kun, SU Cheng, LIU Changlong, MEI Jie, YU Haitao, HE Xin, LU Xiangguo. Profile change rule during Cr3+ polymer weak gel flooding and related improving method [J]. Lithologic Reservoirs, 2022, 34(6): 160-170.
[15] RUAN Yunbo, ZHOU Gang, HUO Fei, SUN Haofei, GUO Pei, LUO Tao, JIANG Huachuan, WEN Huaguo. Source-reservoir characteristics and configuration of the third member of Middle Triassic Leikoupo Formation in central Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(5): 139-151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Lithologic Reservoirs, 2022, 34(2): 0 .
[2] LI Zaiguang,LI Lin. Automatic mapping based on well data[J]. Lithologic Reservoirs, 2007, 19(2): 84 -89 .
[3] CHENG Yuhong,GUO Yanru,ZHENG Ximing,FANG Naizhen,MA Yuhu. The interpretation method and application effect determined by multiple seismic and logging factors[J]. Lithologic Reservoirs, 2007, 19(2): 97 -101 .
[4] LIU Juntian,JIN Zhenjia,LI Zaiguang,TAN Xinping,GUO Lin,WANG Bo,LIU Yuxiang. Controlling factors for lithologic hydrocarbon reservoirs and petroleum prospecting target in Xiaocaohu area , Taibei Sag[J]. Lithologic Reservoirs, 2007, 19(3): 44 -47 .
[5] SHANG Changliang, FU Shouxian. Application of 3D seismic survey in loess tableland[J]. Lithologic Reservoirs, 2007, 19(3): 106 -110 .
[6] WANG Changyong, ZHENG Rongcai, WANG Jianguo, CAO Shaofang, Xiao Mingguo. Sedimentary characteristics and evolution of Badaowan Formation of Lower Jurassic in northwest margin of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(2): 37 -42 .
[7] WANG Ke1 LIU Xianyang, ZHAO Weiwei, SONG Jianghai, SHI Zhenfeng, XIANG Hui. Char acter istics and geological significance of seismites of Paleogene in Yangxin Subsag of J iyang Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 54 -59 .
[8] SUN Hongbin, ZHANG Fenglian. Structural-sedimentary evolution char acter istics of Paleogene in Liaohe Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 60 -65 .
[9] LI Chuanliang. Can uplift r esult in abnormal high pr essur e in formation?[J]. Lithologic Reservoirs, 2008, 20(2): 124 -126 .
[10] WEI Qinlian,ZHENG Rongcai,XIAO Ling,MA Guofu,DOU Shijie,TIAN Baozhong. Study on horizontal heterogeneity in Serie Inferiere of Triassic in 438b block , Algeria[J]. Lithologic Reservoirs, 2009, 21(2): 24 -28 .
TRENDMD: