Lithologic Reservoirs ›› 2022, Vol. 34 ›› Issue (1): 24-33.doi: 10.12108/yxyqc.20220103

• PETROLEUM GEOLOGY • Previous Articles     Next Articles

Simulation experiment of argillaceous sedimentary law of delta-shallow sea sedimentary system: A case study of Yanan Sag, Qiongdongnan Basin

QU Tong1,2, GAO Gang1,2, XU Xinde3, WANG Rui1,2, GAN Jun3, LIANG Gang3, YOU Junjun3   

  1. 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China;
    2. College of Geosciences, China University of Petroleum(Beijing), Beijing 102249, China;
    3. Zhanjiang Branch, CNOOC China Limited, Zhanjiang 524057, Guangdong, China
  • Received:2021-06-25 Revised:2021-09-18 Published:2022-01-21

Abstract: The delta-shallow sea sedimentary system has attracted the attention of many scholars due to its combination of terrestrial organic matter and marine organic matter. In recent years,oil and gas exploration practices in the South China Sea have shown that terrigenous marine mudstone of Yacheng Formation is one of the important sources of oil and gas generation. The source rocks are buried deep and there are few existing wells,which greatly limits the research and exploration progress of source rocks in this area. In order to study the deposition and distribution of argillaceous sediments,based on the geological background of Yacheng Formation in Yannan Sag, Qiongdongnan Basin,a sedimentary simulation experiment was designed to observe the sedimentary process,and the sedimentary bodies were sampled to determine the particle size composition of the samples. Combined with qualitative observation and quantitative comparison,the sedimentary law of argillaceous sediments in delta shallow sea sedimentary system was explored,and the dominant development position of terrestrial marine source rocks was revealed. The results show that from the provenance to the shallow sea,the argillaceous content of sediments increases as a whole. At the delta front slope,the argillaceous content increases suddenly due to the sudden drop of hydrodynamic conditions,but the total amount of the sediments increases first and then decreases,which makes the total amount of the argillaceous sediments decrease to the deep water. The delta front slope-shallow sea sedimentary area is the dominant area for the development of terrestrial marine source rocks,and argillaceous sediments can also be developed in the low-lying and weak hydrodynamic parts of the delta sedimentary body. The increase of terrain slope is conducive to the transportation of argillaceous sediments to the deep-water area. The delta frontshallow sea area is the main part of argillaceous sediment accumulation,that is,the nearshore area near the sea basin,which provides an important basis and guidance for the prediction of the dominant development parts of continental marine source rocks in the deep-water area of Qiongdongnan Basin.

Key words: delta-shallow sea sedimentary system, terrestrial marine source rock, argillaceous sediment, sedi mentary simulation experiment, dominant development area, Qiongdongnan Basin

CLC Number: 

  • TE122.2
[1] GALY V, FRANCE-LANORD C, LARTIGES B. Loading and fate of particulate organic carbon from the Himalaya to the GangaBrahmaputra delta. Geochimica et Cosmochimica Acta,2008, 72(7):1767-1787.
[2] TANOUE E, HANDA N. Differential sorption of organic matter by various sized sediment particles in recent sediment from the Bering Sea. Journal of Oceanography, 1979, 35(5):199-208.
[3] 傅强,李璟,邓秀琴,等. 沉积事件对深水沉积过程的影响:以鄂尔多斯盆地华庆地区长6油层组为例. 岩性油气藏, 2019, 31(1):20-29. FU Q, LI J, DENG X Q, et al. Influence of sedimentary events on deep water sedimentation process:A case of Chang 6 reservoir in Huaqing area, Ordos Basin. Lithologic Reservoirs, 2019, 31(1):20-29.
[4] RAMASWAMY V, BIRGIT G, SHIRODKAR P V, et al. Distribution and sources of organic carbon,nitrogen and their isotopic signatures in sediments from the Ayeyarwady(Irrawaddy)continental shelf,northern Andaman Sea. Marine Chemistry, 2008, 111(3/4):137-150.
[5] HU L M, SHI X F, BAI Y Z, et al. Recent organic carbon sequestration in the shelf sediments of the Bohai Sea and Yellow Sea, China. Journal of Marine Systems, 2016, 155:50-58.
[6] CHENU C,PLANTE A F. Clay-sized organo-mineral complexes in a cultivation chronosequence:Revisiting the concept of the "primary organo-mineral complex". European Journal of Soil Science, 2010, 57(4):596-607.
[7] 孙书文. 渤海及邻近海域表面沉积物中木质素的分布特征及其陆源有机质示踪意义. 青岛:中国海洋大学, 2012. SUN S W. Distribution characteristics of lignin in surface sediments of Bohai Sea and its adjacent waters and its significance for tracing terrigenous organic matter. Qingdao:Ocean University of China, 2012.
[8] 王华新, 线薇微. 长江口表层沉积物有机碳分布及其影响因素. 海洋科学, 2011, 35(5):24-31. WANG H X, XIAN W W. Distribution of the total organic carbon of surface sediment and its influence factors in the Yangtze River estuary. Marine Sciences, 2011, 35(5):24-31.
[9] 张凌. 珠江口及近海沉积有机质的分布、来源其早期成岩作用研究. 广州:中国科学院研究生院(广州地球化学研究所), 2006. ZHANG L. Distribution,source and early diagenesis of sedimentary organic matter in the Pearl River estuary and offshore. Guangzhou:Graduate School of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry), 2006.
[10] 刘忠保, 赖志云. 辫状河-扇三角洲形成及演变的水槽实验. 大庆石油地质与开发, 1994, 13(2):58-62. LIU Z B, LAI Z Y. A flume experiment on formation and evolution of braided stream-fan delta. Petroleum Geology & Oilfield Development in Daqing, 1994, 13(2):58-62.
[11] 王泽中, 汪崎生, 刘忠保. 含沙河流入湖后沙体形成, 发展的水槽实验. 石油与天然气地质, 1991, 12(4):426-438. WANG Z Z, WANG Q S, LIU Z B. Flume experiment on the formation and development of sand body after the sand bearing river flows into the lake. Oil & Gas Geology, 1991, 12(4):426-438.
[12] 魏康强,张元福,李媛,等. 利用水槽实验对不同流速下三角洲发育区别的探究. 复杂油气藏, 2017, 10(3):6-11. WEI K Q, ZHANG Y F, LI Y, et al. Study on difference of delta development under different flow velocities by flume experiment. Complex Hydrocarbon Reservoirs, 2017, 10(3):6-11.
[13] 吴时国, 袁圣强. 世界深水油气勘探进展与我国南海深水油气前景. 天然气地球科学, 2005, 16(6):693-699. WU S G, YUAN S Q. Advance of exploration and petroleum geological features of deep-water hydrocarbon in the world. Natural Gas Geoscience, 2005, 16(6):693-699.
[14] 王振峰, 李绪深, 孙志鹏, 等. 琼东南盆地深水区油气成藏条件和勘探潜力. 中国海上油气, 2011, 23(1):7-13. WANG Z F, LI X S, SUN Z P, et al. Hydrocarbon accumulation conditions and exploration potential in the deep-water region, Qiongdongnan Basin. China Offshore Oil and Gas, 2011, 23(1):7-13.
[15] 武爱俊, 徐建永, 滕彬彬, 等."动态物源" 精细刻画方法与应用:以琼东南盆地崖南凹陷为例. 岩性油气藏, 2017, 29(4):55-63. WU A J, XU J Y, TENG B B, et al. Fine description method of dynamic provenance and its application:A case from Yanan Sag, Qiongdongnan Basin. Lithologic Reservoirs, 2017, 29(4):55-63.
[16] 卢骏, 刘震, 张功成, 等. 南海北部小型海陆过渡相断陷地震相分析及沉积充填演化史研究:以琼东南盆地崖南凹陷崖城组为例. 海洋地质前沿, 2011, 27(7):13-22. LU J, LIU Z, ZHANG G C, et al. Seismic facies analysis and filling history reconstruction of small faulted depressions in northern South China Sea:A historical case on Yacheng Formation in Yanan Depression of the Qiongdongnan Basin. Marine Geology Frontiers, 2011, 27(7):13-22.
[17] 黄合庭, 黄保家, 黄义文, 等. 南海西部深水区大气田凝析油成因与油气成藏机制:以琼东南盆地陵水17-2气田为例. 石油勘探与开发, 2017, 44(3):380-388. HUANG H T, HUANG B J, HUANG Y W, et al. Condensate origin and hydrocarbon accumulation mechanism of the deepwater giant gas field in western South China Sea:A case study of Lingshui 17-2 gas field in Qiongdongnan Basin, South China Sea. Petroleum Exploration and Development, 2017, 44(3):380-388.
[18] 孔敏. 琼东南盆地油气运移动力特征分析. 武汉:中国地质大学,2010. KONG M. Characteristics of oil and gas migration in Qiongdongnan Basin. Wuhan:China University of Geosciences, 2010.
[19] 毛雪莲, 朱继田, 姚哲, 等. 琼东南盆地深水区中央峡谷砂体成因与展布规律. 岩性油气藏, 2017, 29(6):60-68. MAO X L, ZHU J T, YAO Z, et al. Sandbody genesis and distribution regularity of central canyon in deepwater area of Qiongdongnan Basin. Lithologic Reservoirs, 2017, 29(6):60-68.
[20] 蔡佳. 琼东南盆地长昌凹陷新近系三亚组沉积相. 岩性油气藏, 2017, 29(5):46-54. CAI J. Sedimentary facies of Neogene Sanya Formation in Changchang Sag, Qiongdongnan Basin. Lithologic Reservoirs, 2017, 29(5):46-54.
[21] 邵磊, 李昂, 吴国瑄, 等. 琼东南盆地沉积环境及物源演变特征. 石油学报, 2010, 31(4):548-552. SHAO L, LI A, WU G X, et al. Evolution of sedimentary environment and provenance in Qiongdongnan Basin in the northern South China Sea. Acta Petrolei Sinica, 2010, 31(4):548-552.
[22] 刘传联. 琼东南盆地渐新统烃源岩微观沉积特征与沉积环境. 石油学报, 2010, 31(4):573-578. LIU C L. Sedimentary environment and micro-sediment characteristics of Oligocene source rocks in Qiongdongnan Basin. Acta Petrolei Sinica, 2010, 31(4):573-578.
[23] 廖静. 琼东南盆地崖南凹陷有利勘探区研究. 内江科技, 2013, 34(5):43-44. LIAO J. Study on favorable exploration area of Yanan Sag in Qiongdongnan Basin. Neijiang Technology, 2013, 34(5):43-44.
[24] 尚鲁宁, 吕大炜, 李增学, 等. 琼东南盆地崖南凹陷崖城组辫状河三角洲沉积特征及油气地质意义. 油气地质与采收率, 2013, 20(5):4-9. SHANG L N, LYU D W, LI Z X, et al. Sedimentary characteristics and petroleum geological significance of braided river delta of Yacheng Formation in Yanan Sag, Qiongdongnan Basin. Petroleum Geology and Recovery Efficiency, 2013, 20(5):4-9.
[25] 李莹, 张功成, 吕大炜, 等. 琼东南盆地崖城组沉积特征及成煤环境. 煤田地质与勘探, 2011, 39(1):1-5. LI Y, ZHANG G C, LYU D W,et al. Depositional characteristics and coal forming environment of Yacheng Formation, Qiongdongnan Basin. Coal Geology & Exploration, 2011, 39(1):1-5.
[26] 杜同军. 琼东南盆地层序地层和深水区沉积充填特征.青岛:中国海洋大学, 2013. DU T J. Sequence stratigraphy and sedimentary filling characteristics of deep water area in Qiongdongnan Basin. Qingdao:Ocean University of China, 2013.
[27] 尚飞. 鄂尔多斯盆地盒8期沉积模拟实验研究. 荆州:长江大学, 2012. SHANG F. Sedimentary simulation experiment of He 8 period in Ordos Basin. Jingzhou:Yangtze University, 2012.
[28] 周迅, 刘林, 叶永红. 南通市沿江地区潜水稀土元素地球化学特征及其指示意义. 地质科技情报, 2018, 37(3):210-218. ZHOU X, LIU L, YE Y H. Contents and distribution pattern of rare earth elements in phreatic water from Nantong area along the Yangtze River and their hydrochemical indication significance. Bulletin of Geological Science and Technology, 2018, 37(3):210-218.
[1] MAO Xuelian, ZHU Jitian, YAO Zhe, XU Shouli, TANG Lishan. Sandbody genesis and distribution regularity of Central Canyon in deepwater area of Qiongdongnan Basin [J]. Lithologic Reservoirs, 2017, 29(6): 60-68.
[2] CAI Jia. Sedimentary facies of Neogene Sanya Formation in Changchang Sag, Qiongdongnan Basin [J]. Lithologic Reservoirs, 2017, 29(5): 46-54.
[3] WU Aijun, XU Jianyong, TENG Binbin, XIAO Lingli, KANG Bo, LI Fanyi, YIN Binhao. Fine description method of dynamic provenance and its application:a case from Yanan Sag,Qiongdongnan Basin [J]. Lithologic Reservoirs, 2017, 29(4): 55-63.
[4] LIU Chang, SU Long, GUAN Baowen, ZHENG Youwei, CHANG Jiang, ZHENG Jianjing. Thermolytic dynamics and hydrocarbon generation characteristics of Maoming Oil Shale: Taking the geological model of Qiongdongnan Basin as an example [J]. Lithologic Reservoirs, 2014, 26(6): 89-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHENG Yuhong,GUO Yanru,ZHENG Ximing,FANG Naizhen,MA Yuhu. The interpretation method and application effect determined by multiple seismic and logging factors[J]. Lithologic Reservoirs, 2007, 19(2): 97 -101 .
[2] HUANG Sijing,HUANG Peipei,WANG Qingdong,LIU Haonian,WU Meng,ZOU Mingliang. The significance of cementation in porosity preservation in deep-buried sandstones[J]. Lithologic Reservoirs, 2007, 19(3): 7 -13 .
[3] LUO Yue-ming1; LI Zh-ming1;JIANG Hong1;SHI Wei-jun1;LIANG Hai-jun2. [J]. LITHOLOGIC RESERVOIRS, 2008, 20(3): 27 -33 .
[4] HAN Xuefang,ZHU Xiaomin,DONG Yanlei. Four properties characteristics of JZ25-1S buried hill metamorphic reservoir in Liaodong Bay[J]. Lithologic Reservoirs, 2009, 21(3): 90 -93 .
[5] SU Yuping,LI Jian,LIU Yafeng,WEI Jianbo,DENG Zhaoyuan. Research on classification and evolution procession of buried hills in Budate Group in Beier Depression[J]. Lithologic Reservoirs, 2009, 21(4): 58 -62 .
[6] XIA Weiwei,WANG Xinhai,LEI Juanqing. The optimization of well patterns of CO2 -flooding for low-permeable reservoir[J]. Lithologic Reservoirs, 2009, 21(4): 105 -107 .
[7] HU Mingqing,LIU Shaofeng. Application of sequence constrained reservoir predicting techniques to lithological reservoirs exploration in Gaoliu area[J]. Lithologic Reservoirs, 2010, 22(1): 104 -108 .
[8] QIU Hongbing. Evaluation of residual oil potentiality exploration of buried hill reservoir in Shu 13938 of Shuguang Oilfield[J]. Lithologic Reservoirs, 2010, 22(1): 129 -133 .
[9] YI Chao, DING Xiaoqi, GE Pengli, GUO Jia. Productivity prediction of Chang 8 reservoir using log data in Zhenjing Oilfield[J]. Lithologic Reservoirs, 2010, 22(4): 104 -108 .
[10] LI Nanxing, LIU Linyu, ZHENG Rui, LU Degen, ZHU Yuqing, SUN Yunbin. Super-low permeability reservoir evaluation in Zhenjing area, Ordos Basin[J]. Lithologic Reservoirs, 2011, 23(2): 41 -45 .
TRENDMD: