Lithologic Reservoirs ›› 2025, Vol. 37 ›› Issue (5): 155-165.doi: 10.12108/yxyqc.20250514

• PETROLEUM EXPLORATION • Previous Articles    

Fracture effectiveness evaluation of tight reservoir of Cretaceous Yageliemu Formation in Kelasu structural belt,Kuqa piedmont

XU Sihui1,2,3, ZHAO Jun4, ZHAO Xinjian1,2,3, WANG Junyu4, LI Zhaoping1,2,3, LIN Zongpeng4   

  1. 1. Research Institute of Exploration and Development, PetroChina Tarim Oilfield Company, Korla 841000, Xinjiang, China;
    2. R & D Center for Ultra-Deep Complex Reservoir Exploration and Development, CNPC, Korla 841000, Xinjiang, China;
    3. Engineering Research Center for Ultra-Deep Complex Reservoir Exploration and Development, Xinjiang Uygur Autonomous Region, Korla 841000, Xinjiang, China;
    4. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China
  • Received:2025-03-18 Revised:2025-04-25 Published:2025-09-06

Abstract: The geological structures and pressure systems of Cretaceous Yageliemu Formation in Kelasu structural belt of Kuqa piedmont are complex. The development of natural fractures has significant impacts on the reservoir flow capacity. Focused on evaluation effectiveness of fracture reservoirs from Cretaceous Yageliemu Formation, permeability sensitive parameters such as fracture width,stress-fracture angle difference,and friction coefficient were optimized to establish a fracture effectiveness index(FEI)classification standard based on in-situ stress through multi-parameter coupling. The results show that:(1)The permeability boundary between effective fractures(unfilled or semi-filled)and ineffective fractures(fully filled)of reservoirs from Cretaceous Yageliemu Formation is around 0.2 mD. Increasing fracture width can improve the reservoir permeability.(2)High stressfracture angle differences and high normal stress reduce fracture effectiveness by influencing fracture closure. While high friction coefficients improve fracture effectiveness by increasing shear slip between fracture surfaces. (3)Based on the weights of various in-situ stress parameters that affect the fracture effectiveness,the FEI evaluation standard was established. Applying this FEI evaluation standard to classify and evaluate the reservoirs in the study area,the proportion of Class Ⅰ and Class Ⅱ effective fractures in the central part of the study area is higher, indicating better reservoir effectiveness. Towards the east and west,the proportion of such fractures decreases, resulting in poorer reservoir effectiveness.

Key words: in-situ stress, stress-fracture angle difference, friction coefficient, normal stress, shear stress ratio, fracture effectiveness index, Yageliemu Formation, Cretaceous, Kelasu structural belt, Kuqa Depression

CLC Number: 

  • TE122.2+1
[1] 汪林波,韩登林,王晨晨,等.库车坳陷克深井区白垩系巴什基奇克组孔缝充填特征及流体来源[J].岩性油气藏,2022,34(3):49-59. WANG Linbo,HAN Denglin,WANG Chenchen,et al. Characteristics of pore-fracture filling and fluid source of Cretaceous Bashijiqike Formation in Keshen well block,Kuqa Depression[J]. Lithologic Reservoirs,2022,34(3):49-59.
[2] QIN Zhen,WU Jinbo,WANG Cheng,et al. A novel calculation model,characteristics and applications of Archie's cementation exponent in dual porosity reservoirs with intersecting dual fractures[J]. Geoenergy Science and Engineering,2023,231:212390.
[3] WEI Kangjian,QIN Zhen,WANG Cheng,et al. Response characteristics and novel understandings of dual induction logging of horizontal wells in fractured reservoirs[J]. Journal of Applied Geophysics,2024,225:105393.
[4] 毛哲,曾联波,刘国平,等.准噶尔盆地南缘侏罗系深层致密砂岩储层裂缝及其有效性[J]. 石油与天然气地质,2020,41(6):1212-1221. MAO Zhe,ZENG Lianbo,LIU Guoping,et al. Characterization and effectiveness of natural fractures in deep tight sandstones at the south margin of the Junggar Basin,northwestern China[J]. Oil & Gas Geology,2020,41(6):1212-1221.
[5] 王俊鹏,曾联波,周露,等.塔里木盆地克拉苏构造带超深层储层裂缝发育模式及开发意义[J]. 地球科学,2023,48(7):2520-2534. WANG Junpeng,ZENG Lianbo,ZHOU Lu,et al. Development model of natural fractures in ultra-deep sandstone reservoirs with low porosity in Kelasu Tectonic Belt,Tarim Basin[J]. Earth Science,2023,48(7):2520-2534.
[6] 杨凤来,陈蓉,周庆,等.油基泥浆下深层储层裂缝表征及有效性评价[J].西南石油大学学报(自然科学版),2024,46(4):51-64. YANG Fenglai,CHEN Rong,ZHOU Qing,et al. Characterization and effectiveness evaluation of deep reservoir fractures under oil-based mud[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2024,46(4):51-64.
[7] 吴伟,邵广辉,桂鹏飞,等.基于电成像资料的裂缝有效性评价和储集层品质分类:以鸭儿峡油田白垩系为例[J].岩性油气藏,2019,31(6):102-108. WU Wei,SHAO Guanghui,GUI Pengfei,et al. Fracture effectiveness evaluation and reservoir quality classification based on electrical imaging data:A case study of Cretaceous in Yaerxia Oilfield[J]. Lithologic Reservoirs,2019,31(6):102-108.
[8] QIN Zhen,LUO Shaocheng,HUANG Ke,et al. An improved response equation of dual laterolog in dual porosity reservoirs and its solution scheme and applications in fractured reservoirs[J]. Journal of Petroleum Science and Engineering,2022,214:110549.
[9] 谢冰,白利,赵艾琳,等. Sonic Scanner声波扫描测井在碳酸盐岩储层裂缝有效性评价中的应用:以四川盆地震旦系为例[J].岩性油气藏,2017,29(4):117-123. XIE Bing,BAI Li,ZHAO Ailin,et al. Application of Sonic Scanner logging to fracture effectiveness evaluation of carbonate reservoir:A case from Sinian in Sichuan Basin[J]. Lithologic Reservoirs,2017,29(4):117-123.
[10] HUANG Yuyue,WANG Guiwen,KUANG Lichun,et al. Recognition and impact on reservoir quality of fractures in fine-grained sedimentary rocks using image and array acoustic logs[J]. Marine and Petroleum Geology,2025,173:107284.
[11] 李勇,何建华,邓虎成,等.深层页岩储层天然裂缝连通性表征及力学有效性分析:以川东南盆缘丁山-东溪地区五峰组- 龙马溪组为例[J].天然气地球科学,2024,35(2):230-244. LI Yong,HE Jianhua,DENG Hucheng,et al. Analysis of connectivity characterization and mechanical effectiveness of natural fracture in deep shale reservoirs:A case study of the WufengLongmaxi formations in the Dingshan-Dongxi area,southeastern margin of Sichuan Basin[J]. Natural Gas Geoscience,2024,35(2):230-244.
[12] WANG Zihao,CAI Yidong,LIU Dameng,et al. Characterization of natural fracture development in coal reservoirs using logging machine learning inversion,well test data and simulated geostress analyses[J]. Engineering Geology,2024,341:107696.
[13] 徐珂,杨海军,张辉,等.基于地质力学方法的深层致密气藏高效勘探技术:以库车坳陷迪北气藏为例[J]. 地球科学, 2023,48(2):621-639. XU Ke,YANG Haijun,ZHANG Hui,et al. Efficient exploration technology of deep tight gas reservoir based on geomechanics method:A case study of Dibei gas reservoir in Kuqa Depression[J]. Earth Science,2023,48(2):621-639.
[14] 冯振伟,梁积伟,章佩锋,等.塔河南部一间房组构造裂缝有效性分析[J].西安科技大学学报,2022,42(5):950-959. FENG Zhenwei,LIANG Jiwei,ZHANG Peifeng,et al. Analysis of structural fracture effectiveness of Yijianfang Formation in the southern of Tahe area[J]. Journal of Xi'an University of Science and Technology,2022,42(5):950-959.
[15] 包汉勇,刘超,甘玉青,等.四川盆地涪陵南地区奥陶系五峰组-志留系龙马溪组页岩古构造应力场及裂缝特征[J].岩性油气藏,2024,36(1):14-22. BAO Hanyong,LIU Chao,GAN Yuqing,et al. Paleotectonic stress field and fracture characteristics of shales of Ordovician Wufeng Formation to Silurian Longmaxi Formation in southern Fuling area,Sichuan Basin[J]. Lithologic Reservoirs,2024,36(1):14-22.
[16] FJAER E,HOLT R M,HORSRUD P,et al. Petroleum related rock mechanics[M]. 2nd edition. Amsterdam:Elsevier Science, 2008.
[17] BARTON N,CHOUBEY V. The shear strength of rock joints in theory and practice[J]. Rock Mechanics and Rock Engineering, 1977,10:1-54.
[18] 章惠,关达,向雪梅,等.川东北元坝东部须四段裂缝型致密砂岩储层预测[J].岩性油气藏,2018,30(1):133-139. ZHANG Hui,GUAN Da,XIANG Xuemei,et al. Prediction for fractured tight sandstone reservoir of Xu 4 member in eastern Yuanba area,northeastern Sichuan Basin[J]. Lithologic Reservoirs,2018,30(1):133-139.
[19] 张杨,王振兰,范文同,等.基于裂缝精细评价和力学活动性分析的储层改造方案优选及其在博孜区块的应用[J].中国石油勘探,2017,22(6):47-58. ZHANG Yang,WANG Zhenlan,FAN Wentong,et al. Optimization of reservoir stimulation scheme based on fine fracture evaluation and mechanical activity analysis and its application in Bozi block[J]. China Petroleum Exploration,2017,22(6):47-58.
[20] 袁龙,信毅,吴思仪,等.深层白垩系致密砂岩裂缝定性识别、参数建模与控制因素分析:以塔里木盆地库车坳陷克深地区白垩系巴什基奇克组储层为例[J].东北石油大学学报,2021, 45(1):20-31. YUAN Long,XIN Yi,WU Siyi,et al. Research on qualitative identification,parameter modeling and control factors of cracks in deep Cretaceous tight sandstone:Taking the Cretaceous Bashijiqike Formation reservoir in Keshen area,Kuqa Depression,Tarim Basin as an example[J]. Journal of Northeast Petroleum University,2021,45(1):20-31.
[21] 陆云龙,吕洪志,崔云江,等.基于三维莫尔圆的裂缝有效性评价方法及应用[J].石油学报,2018,39(5):564-569. LU Yunlong,LYU Hongzhi,CUI Yunjiang,et al. Method for fracture effectiveness evaluation based on 3D Mohr Circle and its application[J]. Acta Petrolei Sinica,2018,39(5):564-569.
[22] 陆云龙,崔云江,关叶钦,等.基于阵列声波测井的裂缝有效性定量评价方法[J].测井技术,2022,46(1):64-70. LU Yunlong,CUI Yunjiang,GUAN Yeqin,et al. Quantitative evaluation method of fracture effectiveness based on array acoustic logging[J]. Well Logging Technology,2022,46(1):64-70.
[23] 李思亦,唐晓明,何娟,等.基于声波远探测和岩石力学分析的井旁裂缝有效性评价方法[J]. 石油学报,2020,41(11):1388-1395. LI Siyi,TANG Xiaoming,HE Juan,et al. Fracture characterization combining acoustic reflection imaging and rock mechanics[J]. Acta Petrolei Sinica,2020,41(11):1388-1395.
[24] 鞠玮,牛小兵,冯胜斌,等.页岩油储层现今地应力场与裂缝有效性评价:以鄂尔多斯盆地延长组长7油层组为例[J].中国矿业大学学报,2020,49(5):931-940. JU Wei,NIU Xiaobing,FENG Shengbin,et al. The present-day in-situ stress state and fracture effectiveness evaluation in shale oil reservoir:A case study of the Yanchang formation Chang 7 oil-bearing layer in the Ordos Basin[J]. Journal of China University of Mining & Technology,2020,49(5):931-940.
[25] 王淼,刘晓健,宿雯,等. BH复杂断块油田水平地应力的测井计算方法[J].测井技术,2024,48(1):27-34. WANG Miao,LIU Xiaojian,SU Wen,et al. Log calculation method of horizontal in-situ stress in BH complex fault block oilfield[J]. Well Logging Technology,2024,48(1):27-34.
[26] 王清华,杨海军,徐振平,等.塔里木盆地库车坳陷克探1井重大突破与勘探意义[J].中国石油勘探,2023,28(2):1-10. WANG Qinghua,YANG Haijun,XU Zhenping,et al. Major breakthrough and exploration significance of Well Ketan 1 in Kuqa Depression,Tarim Basin[J]. China Petroleum Exploration,2023,28(2):1-10.
[27] QIN Zhen,WU Dong,LUO Shaocheng,et al. A novel method to obtain permeability in a dual-pore system using geophysical logs:A case study of an Upper Triassic Formation,southwest Ordos Basin,China[J]. Natural Resources Research,2020,29(4):2619-2634.
[28] 卫欢,单长安,朱松柏,等.库车坳陷克深地区白垩系巴什基奇克组致密砂岩裂缝发育特征及地质意义[J].岩性油气藏, 2025,37(1):149-160. WEI Huan,SHAN Chang'an,ZHU Songbai,et al. Fracture development characteristics and geological significance of tight sandstone of Cretaceous Bashijiqike Formation in Keshen area, Kuqa Depression[J]. Lithologic Reservoirs,2025,37(1):149- 160.
[29] 黄继新,彭仕宓,王小军,等.成像测井资料在裂缝和地应力研究中的应用[J].石油学报,2006,27(6):65-69. HUANG Jixin,PENG Shimi,WANG Xiaojun,et al. Applications of imaging logging data in the research of fracture and ground stress[J]. Acta Petrolei Sinica,2006,27(6):65-69.
[30] 赵军,王淼,祁兴中,等.轮西地区奥陶系地应力方向及裂缝展布规律分析[J].岩性油气藏,2010,22(3):95-99. ZHAO Jun,WANG Miao,QI Xingzhong,et al. Ground stress direction and fracture distribution law of Ordovician in Lunxi area[J]. Lithologic Reservoirs,2010,22(3):95-99.
[31] BARTON C A,ZOBACK M D. Self-similar distribution and properties of macroscopic fractures at depth in crystalline rock in the Cajon Pass Scientific Drill Hole[J]. Journal of Geophysical Research,1992,97(B4):5181-5200.
[32] 黄荣樽,庄锦江.一种新的地层破裂压力预测方法[J].石油钻采工艺,1986,8(3):1-14. HUANG Rongzun,ZHUANG Jinjiang. A new method for predicting breakup pressure of formation[J]. Oil Drilling & Production Technology,1986,8(3):1-14.
[1] ZHANG Yunfeng, SHI Xiaodong, LIU Zongbao, YANG Xuewei, WANG Hongjun, HAO Bin. Structural-lithologic trap types and main controlling factors of hydrocarbon accumulation of Cretaceous in Longhupao Oilfield,Songliao Basin [J]. Lithologic Reservoirs, 2025, 37(5): 111-121.
[2] LIU Lijuan, LI Junhui, FU Xiuli, BAI Yue, ZHENG Qiang. Characteristics and geological significance of volcanic ash of Cretaceous Qingshankou Formation in the central depression of northern Songliao Basin [J]. Lithologic Reservoirs, 2025, 37(5): 145-154.
[3] HU Changhao, PEI Jiaxue, CAI Guogang. Hydrocarbon continuous accumulation conditions of Cretaceous Jiufotang Formation in Ludong Sag,Kailu Basin [J]. Lithologic Reservoirs, 2025, 37(3): 1-12.
[4] XIE Huiwen, ZHANG Liang, WANG Bin, LUO Haoyu, ZHANG Ke, ZHANG Guowei, LI Ling, SHEN Lin. Characteristics of Triassic paleostructure and their control on sedimentation in Kuqa Depression,Tarim Basin [J]. Lithologic Reservoirs, 2025, 37(3): 13-22.
[5] RAN Yixuan, DU Changpeng, ZHANG Jingjing. Accumulation condition of “below the source rock” tight oil in the 4th member of Cretaceous Quantou Formation in Putaohua Oilfield, northern Songliao Basin [J]. Lithologic Reservoirs, 2025, 37(3): 47-58.
[6] HE Xing, JIN Wei, ZHANG Fan, HUO Qiuli, LI Yue, BAO Junchi, LIU Lu, ZENG Qingbing. Geochemical characteristics and source of crude oil of Cretaceous Tongbomiao Formation in Urxun Depression,Hailar Basin [J]. Lithologic Reservoirs, 2025, 37(1): 41-52.
[7] CHEN Hongguo, ZHANG Fengqi, JIANG Qingchun, LIU Hongyan, SUN Lidong, LIU Gang. Overpressure-generating mechanism and its evolution characteristics of Cretaceous Shahezi Formation in Xujiaweizi Fault Depression,Songliao Basin [J]. Lithologic Reservoirs, 2025, 37(1): 102-114.
[8] WEI Huan, SHAN Changan, ZHU Songbai, HUANG Zhongxin, LIU Hanguang, ZHU Bing, WU Changtao. Fracture development characteristics and geological significance of tight sandstone of Cretaceous Bashijiqike Formation in Keshen area,Kuqa Depression [J]. Lithologic Reservoirs, 2025, 37(1): 149-160.
[9] QU Weihua, TIAN Ye, DONG Changchun, GUO Xiaobo, LI Lili, LIN Siya, XUE Song, YANG Shihe. Characteristics of Cretaceous source rocks and their controlling effect on hydrocarbon accumulation in Dehui Fault Depression,Songliao Basin [J]. Lithologic Reservoirs, 2024, 36(6): 122-134.
[10] XIAO Boya. Characteristics and favorable zone distribution of tuff reservoirt of Cretaceous in A’nan sag,Erlian Basin [J]. Lithologic Reservoirs, 2024, 36(6): 135-148.
[11] YAN Jianping, LAI Siyu, GUO Wei, SHI Xuewen, LIAO Maojie, TANG Hongming, HU Qinhong, HUANG Yi. Research progress on casing deformation types and influencing factors in geological engineering of shale gas wells [J]. Lithologic Reservoirs, 2024, 36(5): 1-14.
[12] WANG Hongxing, HAN Shiwen, HU Jia, PAN Zhihao. Prediction and main controlling factors of tuff reservoirs of Cretaceous Huoshiling Formation in Dehui fault depression,Songliao Basin [J]. Lithologic Reservoirs, 2024, 36(5): 35-45.
[13] YANG Weihua. Hydrocarbon accumulation model and main controlling factors of tight oil of the fourth member of Cretaceous Yingcheng Formation in Shuangcheng fault depression,Songliao Basin [J]. Lithologic Reservoirs, 2024, 36(4): 25-34.
[14] ZHOU Hongfeng, WU Haihong, YANG Yuxi, XIANG Hongying, GAO Jihong, HE Haowen, ZHAO Xu. Sedimentary characteristics of fan delta front of the fourth member of Cretaceous A’ershan Formation in Bayindulan Sag,Erlian Basin [J]. Lithologic Reservoirs, 2024, 36(4): 85-97.
[15] TIAN Ya, LI Junhui, CHEN Fangju, LI Yue, LIU Huaye, ZOU Yue, ZHANG Xiaoyang. Tight reservoir characteristics and favorable areas prediction of Lower Cretaceous Nantun Formation in central fault depression zone of Hailar Basin [J]. Lithologic Reservoirs, 2024, 36(4): 136-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
TRENDMD: