Lithologic Reservoirs ›› 2026, Vol. 38 ›› Issue (1): 191-200.doi: 10.12108/yxyqc.20260117

• PETROLEUM ENGINEERING AND OIL & GAS FIELD DEVELOPMENT • Previous Articles    

A new method for splitting the production of fractured horizontal wells in strong heterogeneous gas reservoirs:Taking Permian He1 member gas reservoir in Dongsheng Gasfield of Ordos Basin as an example

XUN Xiaoquan1(), LI Hongtao2, LI Changping1, YANG Fan1, LIU Xiong3   

  1. 1 Research Institute of Exploration and DevelopmentSinopec North China Oil & Gas BranchZhengzhou 450006, China
    2 Sinopec Petroleum Exploration and Development Research Institute, Beijing 102206, China
    3 School of Petroleum Engineering, Xi’an Shiyou University, Xi’an 710065, China
  • Received:2025-03-25 Revised:2025-05-16 Online:2026-01-01 Published:2026-01-23

Abstract:

In order to quantitatively evaluate the initial gas production contribution rate of each fracturing section of the fractured horizontal well in a strong heterogeneous gas reservoir, taking Permian He1 member gas reservoir in Xinzhao block of Dongsheng Gasfield in Ordos Basin as an example, based on reservoir geological engineering parameters, fracture characteristics, and gas production profile testing analysis, a new method for segmented production splitting of“fracture-controlled reserves”that integrated geological engineering factors was proposed. The results show that:(1)The characteristics of hydraulic fractures in Permian He1 member gas reservoir in Xinzhao block of Dongsheng Gasfield are controlled by geology and engineering. With the same construction parameters, better physical properties correspond to shorter hydraulic fractures half-length. Under the same geological conditions, larger construction displacement and greater net liquid inflow into the ground lead to longer fracture half-length, and more perforation clusters lead to shorter the fracture half-length. The ratio of half length to width of hydraulic fracture in different types of reservoirs in the same area is consistent.(2)The output of each horizontal fracturing section is significantly affected by geological engineering factors,and sections with good physical properties, good gas-bearing, and large-scale fracturing construction achieve greater post fracturing production capacity.(3)Taking into account geological engineering factors, it was clarified that the transformed “fracture-controlled reserves” have a linear relationship with the initial production capacity of each fracturing section of the horizontal well in the strong heterogeneous gas reservoir, with a correlation coefficient of 0.997, indicating that the larger fracture-controlled reserves lead to high proportion of production capacity in each fracturing section. By comparing the splitting method of “fracture-controlled reserves” with the gas production profile testing results, it was found that the relative error of splitting gas production in each section of ClassⅠand ClassⅡreservoirs is within 12.00%.

Key words: strong heterogeneous gas reservoir, hydraulic fracture, gas production profile, fracture-controlled reserves, splitting production, He1 member, Permian, Dongsheng Gasfield, Ordos Basin

CLC Number: 

  • TE157.1

Fig. 1

Structural location of Xinzhao block of Dongsheng Gasfield (a) and comprehensive stratigraphic column of the first member of Xiashihezi Formation of Permian (b), Ordos Basin"

Table 1

Comprehensive evaluation for geological engineering of He1 member of Permian in Xinzhao block of Dongsheng Gasfield, Ordos Basin"

岩性 储层
类型
物性 岩石力学(动态) 地应力 脆性
指数
综合
评价
孔隙度/% 渗透率/mD 泊松比 杨氏模量/GPa 最小主应力/MPa 最大主应力/MPa
砂岩 Ⅰ类 ≥10.0 ≥1.00 0.18 39.0 62.4 79.6 81
Ⅱ类 5.0~10.0 0.15~1.00 0.19 47.8 62.6 80.3 79 较好
Ⅲ类 < 5.0 < 0.15 0.22 51.2 64.2 81.9 78
泥岩 0.30 34.8 69.3 91.1 25 非储层

Fig. 2

Schematic diagram representing different stimulated volume and fracture extent during fracturing process"

Fig. 3

Monitoring results of fractures of He1 member of Permian in well B of Dongsheng Gasfield, Ordos Basin"

Table 2

Comparison of fracturing characteristics under different main controlling factors of well B of Dongsheng Gasfield, Ordos Basin"

主控因素 监测结果
射孔簇数 储层类型 入地
净液量/m3
裂缝
波及
长度/m
波及
宽度/m
裂缝
半长/m
百方压裂
液裂缝
半长/m
裂缝半长
与波及
宽度比值
单簇 Ⅰ类 829.0 305 25 153 18.4 6.1
单簇 Ⅲ类 780.0 338 29 169 21.6 5.8
单簇 Ⅲ类 761.0 328 28 164 21.5 5.9
单簇 Ⅲ类 799.0 348 29 174 21.7 6.0
单簇 Ⅰ类 829.0 305 25 153 18.4
两簇 Ⅰ类 805.0 228 51 114 14.2
三簇 Ⅰ类 952.0 190 71 95 9.9

Table 3

Construction parameters and output characteristics of geological engineering in well C of Dongsheng Gasfield, Ordos Basin"

压裂段 储层
类型
射孔
簇数
储层
厚度/m
自然伽马/API 孔隙度/% 含气
饱和度/%
施工排量/
(m3·min-1
入地净液量/
m3
加砂量/m3 产气量/
(m3·d-1
贡献
占比/%
第1段 Ⅲ类 单簇 26.0 74 3.9 33.9 8.0 664.0 60.6 0 0
第2段 Ⅰ类 两簇 25.7 75 10.2 50.5 10.0 833.0 85.3 5 424 8.54
第3段 Ⅱ类 两簇 25.4 72 6.3 42.0 10.0 866.0 90.4 3 210 5.06
第4段 Ⅰ类 两簇 25.1 85 13.3 60.5 10.0 734.0 69.0 12 257 19.30
第5段 Ⅰ类 三簇 24.8 59 16.5 66.9 11.0 1 117.0 110.5 24 356 38.35
第6段 Ⅲ类 单簇 24.5 85 3.6 32.8 8.0 650.0 68.0 0 0
第7段 Ⅲ类 单簇 24.2 73 3.8 33.5 8.0 635.0 57.0 0 0
第8段 Ⅱ类 两簇 23.9 89 6.0 40.2 10.0 933.0 97.0 2 207 3.48
第9段 Ⅰ类 两簇 23.6 51 16.2 66.3 10.0 832.0 93.2 16 049 25.27
合计 63 503 100.00

Fig. 4

Relationship of different geological parameters with production capacity of well C in Dongsheng Gasfield, Ordos Basin"

Fig. 5

Relationship of different fracturing construction parameters with production capacity of well C in Dongsheng Gasfield, Ordos Basin"

Fig. 6

Schematic diagram of fracturing differentiated design for different reservoir types of Dongsheng Gasfield, Ordos Basin"

Fig. 7

Schematic diagram of seepage profile of any fractures in the vertical horizontal sections of a fractured horizontal well"

Fig. 8

Longitudinal and planar morphology diagram of hydraulic fractures of Dongsheng Gasfield, Ordos Basin"

Table 4

Fracture-controlled reserves and splitting parameters of each fracturing section in well C of Dongsheng Gasfield, Ordos Basin"

压裂段 射孔
簇数
储层
类型
缝半
长/m
储层
缝高/m
波及
宽度/m
缝控
体积/104 m3
缝控
储量/104 m3
缝控储量
占比/%
劈分产量/(m3·d-1 产剖测试
产量/(m3·d-1
相对
误差/%
第1段 单簇 Ⅲ类 170 26.0 28 12.93 38.72 2.65 1 680 0
第2段 两簇 Ⅰ类 101 25.7 48 13.04 136.89 9.35 5 940 5 424 -9.51
第3段 两簇 Ⅱ类 98 25.4 52 13.55 80.96 5.53 3 513 3 210 -9.45
第4段 两簇 Ⅰ类 102 25.1 53 14.20 257.98 17.63 11 194 12 257 8.67
第5段 三簇 Ⅰ类 89 24.8 87 20.10 500.51 34.20 21 718 24 356 10.83
第6段 单簇 Ⅲ类 170 24.5 28 12.17 32.41 2.21 1 406 0
第7段 单簇 Ⅲ类 170 24.2 28 12.03 34.57 2.36 1 500 0
第8段 两簇 Ⅱ类 92 23.6 45 10.23 55.68 3.81 2 416 2 207 -9.47
第9段 两簇 Ⅰ类 102 23.3 54 13.43 325.72 22.26 14 134 16 049 11.93
合计 121.68 1 463.44 100.00 63 503 63 503

Fig. 9

Splitting relationship of segmented production of Dongsheng Gasfield, Ordos Basin"

[1] 李宏涛, 荀小全, 张占杨, 等. 基于井震联合逐级约束的沉积微相展布刻画;以鄂尔多斯盆地锦72井区盒1段H1-2小层为例[J]. 天然气地球科学, 2024, 35(4):596-607.
doi: 10.11764/j.issn.1672-1926.2023.10.008
LI Hongtao, XUN Xiaoquan, ZHANG Zhanyang, et al. Sedimentary microfacies distribution analysis based on well seismic combination:Case study of the H1-2 sublayer of He 1 Member of Jin 72 well block in Hangjinqi area,Ordos Basin[J]. Natural Gas Geoscience, 2024, 35(4):596-607.
doi: 10.11764/j.issn.1672-1926.2023.10.008
[2] 马旭, 郝瑞芬, 来轩昂, 等. 苏里格气田致密砂岩气藏水平井体积压裂矿场试验[J]. 石油勘探与开发, 2014, 41(5):742-747.
MA Xu, HAO Ruifen, LAI Xuan’ang, et al. Field test of volume fracturing for horizontal wells in Sulige tight sandstone gas reservoirs[J]. Pertroleum Exploration and Development, 2014, 41(5):742-747.
[3] 蒋廷学, 王海涛, 卞晓冰, 等. 水平井体积压裂技术研究与应用[J]. 岩性油气藏, 2018, 30(3):1-11.
JIANG Tingxue, WANG Haitao, BIAN Xiaobing, et al. Volume fracturing technology for horizontal well and its application[J]. Lithologic Reservoirs, 2018, 30(3):1-11.
doi: 10.12108/yxyqc.20180301
[4] 李琴, 陈程, 荀小全. 低渗致密气藏压裂水平井产能预测新方法[J]. 天然气地球科学, 2013, 24(3):633-638.
doi: 10.11764/j.issn.1672-1926.2013.03.633
LI Qin, CHEN Cheng, XUN Xiaoquan. A new method of predicting gas wells’productivity of fractured horizontal well of low-permeability tight gas reservoir[J]. Natural Gas Geoscience, 2013, 24(3):633-638.
doi: 10.11764/j.issn.1672-1926.2013.03.633
[5] 李克智. 鄂尔多斯盆地大牛地气田致密砂岩气藏水平井压裂“甜点”识别方法[J]. 大庆石油地质与开发, 2022, 41(6):124-132.
LI Kezhi. Horizontal well fracturing“sweet spots”identification method for tight sandstone gas reservoir in Daniudi Gas Field in Ordos Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(6):124-132.
[6] 张郁哲, 程时清, 史文洋, 等. 多层合采井产量劈分方法及在大牛地气田的应用[J]. 石油钻采工艺, 2019, 41(5):624-629.
ZHANG Yuzhe, CHENG Shiqing, SHI Wenyang, et al. Commingled producing well production split method and its application in Daniudi gasfield[J]. Oil Drilling & Production Techno-logy, 2019, 41(5):624-629.
[7] 任文希, 郭建春, 曾凡辉, 等. 一种致密砂岩气多段压裂水平井产量劈分方法:202110284517.8[P]. 2021-06-22.
REN Wenxi, GUO Jianchun, ZENG Fanhui, et al. A production splitting method for multi-stage fracturing of tight sandstone gas in horizontal wells:202110284517.8[P]. 2021-06-22.
[8] 刘俞佐, 石万忠, 刘凯, 等. 鄂尔多斯盆地杭锦旗东部地区上古生界天然气成藏模式[J]. 岩性油气藏, 2020, 32(3):56-67.
doi: 10.12108/yxyqc.20200306
LIU Yuzuo, SHI Wanzhong, LIU Kai, et al. Natural gas accumulation patterns of Upper Paleozoic in eastern Hangjinqi area,Ordos Basin[J]. Lithologic Reservoirs, 2020, 32(3):56-67.
doi: 10.12108/yxyqc.20200306
[9] 段治有, 李贤庆, 陈纯芳, 等. 杭锦旗地区 J58 井区下石盒子组气水分布及其控制因素[J]. 岩性油气藏, 2019, 31(3):45-54.
doi: 10.12108/yxyqc.20190306
DUAN Zhiyou, LI Xianqing, CHEN Chunfang, et al. Gas and water distribution and its controlling factors of Xiashihezi Formation in J58 well area,Hangjinqi area[J]. Lithologic Reservoirs, 2019, 31(3):45-54.
doi: 10.12108/yxyqc.20190306
[10] 李宏涛. 基于井-震联合的辫状河沉积微相分析:以鄂尔多斯盆地东胜气田锦77井区为例[J]. 石油与天然气地质, 2025, 46(1):91-107.
LI Hongtao. Microfacies analysis of braided river deposits based on seismic-to-well ties:A case study of the Jin-77 well block in the Dongsheng gas field,Ordos Basin[J]. Oil & Gas Geology, 2025, 46(1):91-107.
[11] 荀小全. 东胜气田新召东盒1段储层特征及物性影响因素[J]. 天然气技术与经济, 2022, 16(1):10-16.
doi: 10.3969/j.issn.2095-1132.2022.01.002
XUN Xiaoquan. Reservoir characteristics and influential factors of physical property:An example from Shihezi 1 member,East Xinzhao block,Dongsheng gasfield,Ordos Basin[J]. Natural Gas Technology and Economy, 2022, 16(1):10-16.
[12] 龙盛芳, 王玉善, 李国良, 等. 苏里格气田苏49区块盒8下亚段致密储层非均质性特征[J]. 岩性油气藏, 2021, 33(2):59-69.
doi: 10.12108/yxyqc.20210207
LONG Shengfang, WANG Yushan, LI Guoliang, et al. Heterogeneity characteristics of tight reservoir of lower submember of He 8 member in Su 49 block,Sulige gas field[J]. Lithologic Reservoirs, 2021, 33(2):59-69.
doi: 10.12108/yxyqc.20210207
[13] 严敏, 赵靖舟, 曹青, 等. 鄂尔多斯盆地临兴地区二叠系石盒子组储层特征[J]. 岩性油气藏, 2021, 33(2):49-58.
doi: 10.12108/yxyqc.20210206
YAN Min, ZHAO Jingzhou, CAO Qing, et al. Reservoir characteristics of Permian Shihezi Formation in Linxing area,Ordos Basin[J]. Lithologic Reservoirs, 2021, 33(2):49-58.
doi: 10.12108/yxyqc.20210206
[14] 石道涵, 张兵, 何举涛, 等. 鄂尔多斯长7致密砂岩储层体积压裂可行性评价[J]. 西安石油大学学报(自然科学版), 2014, 29(1):52-55.
SHI Daohan, ZHANG Bing, HE Jutao, et al. Feasibility evaluation of volume fracturing of Chang-7 tight sandstone reservoir in Ordos Basin[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2014, 29(1):52-55.
[15] 赵宁, 司马立强, 刘志远, 等. 基于地层条件下力学试验的致密砂岩可压裂性评价[J]. 测井技术, 2022, 46(2):127-134.
ZHAO Ning, SIMA Liqiang, LIU Zhiyuan, et al. Fracturing evaluation of tight sandstone based on rock mechanical experiment under formation conditions[J]. Well Logging Technology, 2022, 46(2):127-134.
[16] 刘乃震, 张兆鹏, 邹雨时, 等. 致密砂岩水平井多段压裂裂缝扩展规律[J]. 石油勘探与开发, 2018, 45(6):1059-1068.
doi: 10.11698/PED.2018.06.14
LIU Naizhen, ZHANG Zhaopeng, ZOU Yushi, et al. Propagation law of hydraulic fractures during multi-staged horizontal well fracturing in a tight reservoir[J]. Petroleum Exploration and Development, 2018, 45(6):1059-1068.
[17] 苏皓, 雷征东, 张荻萩, 等. 致密油藏体积压裂水平井参数优化研究[J]. 岩性油气藏, 2018, 30(4):140-148.
SU Hao, LEI Zhengdong, ZHANG Diqiu, et al. Volume fracturing parameters optimization of horizontal well in tight reservoir[J]. Lithologic Reservoirs, 2018, 30(4):140-148.
doi: 10.12108/yxyqc.20180417
[18] 刘平, 刘东明, 姬程伟, 等. 水力压裂监测与诊断技术进展与组合应用[J]. 测井技术, 2024, 48(5):721-730.
LIU Ping, LIU Dongming, JI Chengwei, et al. Advances and combined applications in hydraulic fracturing monitoring and diagnostic technology[J]. Well Logging Technology, 2024, 48(5):721-730.
[19] 赵超峰, 贾振甲, 田建涛, 等. 基于井中微地震监测方法的压裂效果评价:以吉林探区Y22井为例[J]. 岩性油气藏, 2020, 32(2):161-168.
doi: 10.12108/yxyqc.20200218
ZHAO Chaofeng, JIA Zhenjia, TIAN Jiantao, et al. Fracturing effect evaluation based on borehole microseismic monitoring method:A case study from well Y22 in Jilin exploration area[J]. Lithologic Reservoirs, 2020, 32(2):161-168.
doi: 10.12108/yxyqc.20200218
[20] 颜晓华, 黄佳, 李芳书. 广域电磁法压裂监测技术在致密砂岩气藏中的应用:以川中金秋气田为例[J]. 非常规油气, 2024, 11(4):121-134.
YAN Xiaohua, HUANG Jia, LI Fangshu. Application of wide field electromagnetic method fracturing monitoring technology in tight sandstone gas reservoir :A case study of Jinqiu Gas Field in central Sichuan[J]. Unconventional Oil & Gas, 2024, 11(4):121-134.
[21] 范继武, 许珍萍, 刘莉莉, 等. 苏里格气田强非均质致密气藏水平井产气剖面[J]. 新疆石油地质, 2022, 43(3):341-345.
FAN Jiwu, XU Zhenping, LIU Lili, et al. Production profile of horizontal wells in strongly heterogeneous tight gas reservoirs in Sulige gas field[J]. Xinjiang Petroleum Geology, 2022, 43(3):341-345.
[22] 柳明, 陈俊杰, 程艳, 等. 苏东南区水平井产气剖面测井技术应用[J]. 天然气技术与经济, 2018, 12(5):30-32.
doi: 10.3969/j.issn.2095-1132.2018.05.009
LIU Ming, CHEN Junjie, CHENG Yan, et al. Application of gas producing profile logging to horizontal wells,Su southeast area,Sulige gasfield[J]. Natural Gas Technology and Economy, 2018, 12(5):30-32.
[23] 吴兵, 高伟, 侯山, 等. 苏里格致密砂岩水平井地质工程一体化压裂效果解释与评价[J]. 西安石油大学学报(自然科学版), 2022, 37(4):61-68.
WU Bing, GAO Wei, HOU Shan, et al. Interpretation and evaluation of geological engineering integrated fracturing effect of horizontal wells in Sulige tight sandstone[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2022, 37(4):61-68.
[24] 邓美洲, 牛娜, 尹霜, 等. 各向异性致密砂岩气藏分段压裂水平井气水两相产能预测模型[J]. 油气地质与采收率, 2024, 31(3):99-111.
DENG Meizhou, NIU Na, YIN Shuang, et al. Gas-water two-phase productivity prediction model of multistage fractured horizontal wells in anisotropic tight sandstone gas reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(3):99-111.
[25] 王新杰. 致密气藏压裂水平井产能计算方法[J]. 岩性油气藏, 2018, 30(5):161-168.
doi: 10.12108/yxyqc.20180520
WANG Xinjie. Calculation method for productivity of fractured horizontal well in tight gas reservoir[J]. Lithologic Reservoirs, 2018, 30(5):161-168.
doi: 10.12108/yxyqc.20180520
[26] 梁天成, 才博, 蒙传幼, 等. 水力压裂支撑剂性能对导流能力的影响[J]. 断块油气田, 2021, 28(3):403-407.
LIANG Tiancheng, CAI Bo, MENG Chuanyou, et al. The effect of propant performance of hydraulic fracturing on conductivity[J]. Fault-Block Oil & Gas Field, 2021, 28(3):403-407.
[27] 雷群, 杨立峰, 段瑶瑶, 等. 非常规油气“缝控储量”改造优化设计技术[J]. 石油勘探与开发, 2018, 45(4):719-726.
doi: 10.11698/PED.2018.04.18
LEI Qun, YANG Lifeng, DUAN Yaoyao, et al. The “fracture-controlled reserves”based stimulation technology for unconventional oil and gas reservoirs[J]. Petroleum Exploration and Development, 2018, 45(4):719-726.
doi: 10.11698/PED.2018.04.18
[28] 王永祥. 非常规油气区带特征及资源管理思考[J]. 中国石油勘探, 2022, 27(3):20-26.
doi: 10.3969/j.issn.1672-7703.2022.03.002
WANG Yongxiang. Characteristics of unconventional oil and gas plays and thoughts on resource management[J]. China Petroleum Exploration, 2022, 27(3):20-26.
doi: 10.3969/j.issn.1672-7703.2022.03.002
[29] ZHAO Gang. A simplified engineering model integrated stimulated reservoir volume (SRV) and tight formation characterization with multistage fractured horizontal wells[R]. Calgary,The Proceedings of SPE Canadian Unconventional Resources Conference, 2012.
[30] 方文超, 刘传喜, 苟斐斐, 等. 非常规油气藏水平井体积压裂改造体积计算方法[J]. 科学技术与工程, 2021, 21(5):1681-1689.
FANG Wenchao, LIU Chuanxi, GOU Feifei, et al. Calculation methods of reservoir volume stimulated by volume fracturing of horizontal well in unconventional reservoirs[J]. Science Technology and Engineering, 2021, 21(5):1681-1689.
[31] 李月丽, 易小燕, 罗衍灵. 大牛地气田产气剖面特征的认识及思考[J]. 石油地质与工程, 2019, 33(3):106-108.
LI Yueli, YI Xiaoyan, LUO Yanling. Understanding and thinking of gas production profile characteristics in Daniudi gas field[J]. Petroleum Geology and Engineering, 2019, 33(3):106-108.
[1] XIAO Fuqiang, XIAO Weidong, JIANG Zhidong, GAO Lei, ZHAO Zhengwei, PAN Xiaofei, CHEN Fugui, ZOU Yongjun. Coal measure shale reservoir characteristics and exploration potential of Permian Leping Formation in Pingle Depression of Lower Yangtze region [J]. Lithologic Reservoirs, 2026, 38(1): 100-114.
[2] ZHANG Mengbo, PENG Jiankang, CUI Xiaojie, ZHANG Dong, NI Na, LONG Shengfang, WEI Penghui. Seismic prediction technology for coal rock gas reservoir of Carboniferous Benxi Formation in northern Mizhi area, Ordos Basin [J]. Lithologic Reservoirs, 2026, 38(1): 162-171.
[3] SU Shuai, QU Hongjun, YIN Hu, ZHANG Leigang, YANG Xiaofeng. Fractal characteristics of pore throat structure and their influence on reservoir physical properties of tight sandstone reservoir: A case study of Triassic Chang 8 member in Fuxian area, Ordos Basin [J]. Lithologic Reservoirs, 2025, 37(6): 88-98.
[4] LU Jiang, WANG Jian, WU Nan, LI Chengshan, FENG Zifei. Exploration potential of shale gas in Ordovician Wulalike Formation in the western margin of Ordos Basin [J]. Lithologic Reservoirs, 2025, 37(5): 34-48.
[5] LIU Guanbo, CHEN Shijia, LI Shihong, ZOU Yang, LI Yong. Gas generation potential and reservoir formation condition of Permian Fengcheng Formation source rock in Mazhong structural belt of Mahu Sag [J]. Lithologic Reservoirs, 2025, 37(5): 83-96.
[6] YE Hui, ZHU Feng, WANG Guizhong, SHI Wanzhong, KANG Xiaoning, DONG Guoning, Naziyiman, WANG Ren. Paleogeomorphy restoration of Permian-Jurassic and its hydrocarbon implications in Junggar Basin,NW China [J]. Lithologic Reservoirs, 2025, 37(5): 122-132.
[7] ZHAN Lin, FAN Cunhui, TANG Wen, YANG Xiyan, LIU Dongxi, LI Bo, YANG Xinrui. Structural characteristics of Permian Wujiaping Formation,Nanya area, eastern Sichuan Basin and their hydrocarbon reservoir control mechanism [J]. Lithologic Reservoirs, 2025, 37(5): 133-144.
[8] ZHAO Rundong, WANG Jinchang, LUO Yi, ZHOU Ruili, ZHOU Jian. A new calculation method for dynamic reserves of gas water coproduction volumetric gas reservoirs in Daniudi Gasfield of Ordos Basin [J]. Lithologic Reservoirs, 2025, 37(5): 186-192.
[9] WANG Qing, TIAN Chong, LUO Chao, ZHANG Jingyuan, YANG Xue, WU Wei, TAO Xiayan. Characteristics and exploration prospects of coal-rock gas reservoirs in Permian Longtan Formation in Suining-Hejiang area,Sichuan Basin [J]. Lithologic Reservoirs, 2025, 37(4): 26-37.
[10] WANG Jingzhao, JIN Wei, CHANG Lipeng, DONG Zhongliang, WANG Gaowen. Characteristics and hydrocarbon accumulation process of karst reservoir in the third member of Permian Maokou Formation,Hechuan-Tongnan area,central Sichuan Basin [J]. Lithologic Reservoirs, 2025, 37(4): 63-72.
[11] YAN Weitao, LIAO Yun, HUANG Wenming, ZHANG Benjian, HU Xin, LI Wenzheng, WU Juan, DENG Bin. Multi-phase fluid activities and hydrocarbon accumulation process of Permian Qixia Formation,southwestern Sichuan Basin [J]. Lithologic Reservoirs, 2025, 37(4): 73-83.
[12] WANG Yonggang, DU Guanghong, HE Run, QU Chang, SHE Yuwei, HUANG Cheng. Geophysical identification and distribution prediction of weathered crust reservoirs in Lower Paleozoic of Longdong area,Ordos Basin [J]. Lithologic Reservoirs, 2025, 37(4): 127-135.
[13] LI Gengtong, HE Dengfa. Development characteristics and oil-gas accumulation condition of the aulacogen in Dnieper-Donets Basin [J]. Lithologic Reservoirs, 2025, 37(4): 169-183.
[14] XIAO Wenhua, YANG Jun, YAN Baonian, WANG Jianguo, LI Shaoyong, MA Qilin, LI Zonglin, XUE Huanzhao. Characteristics and main controlling factors of Triassic Chang 8 tight sandstone reservoir in Huanqing area,Ordos Basin [J]. Lithologic Reservoirs, 2025, 37(3): 23-32.
[15] ZHANG Zhaohui, ZHANG Jiaosheng, LIU Jungang, ZOU Jiandong, ZHANG Jianwu, LIAO Jianbo, LI Zhiyong, ZHAO Wenwen. Lithofacies identification using conventional logging curves and its exploration significance,Triassic Chang 81 sub-member,Longdong area,Ordos Basin [J]. Lithologic Reservoirs, 2025, 37(3): 95-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
TRENDMD: