Lithologic Reservoirs ›› 2009, Vol. 21 ›› Issue (3): 50-55.doi: 10.3969/j.issn.1673-8926.2009.03.010

Previous Articles     Next Articles

Controlling factors of order degree of dolomite in carbonate rocks:A case study from Lower Paleozoic in Tahe Oilfield and Triassic in northeastern Sichuan Basin

ZHONG Qianqian,HUANG Sijing,ZOUMingliang,TONG Hongpeng,HUANG Keke, ZHANG Xuehua   

  1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology,Chengdu 610059, China
  • Online:2009-09-16 Published:2009-09-16

Abstract:

As an important mineralogical characteristic, the order degree of dolomite is widely used in the study of dolomite formation mechanism and carbonate reservoir research. Based on the X-ray diffraction analysis of Cambrian-Ordovician carbonatite samples in Tahe Oilfield and Triassic carbonatite samples in northeastern Sichuan Basin, the controlling factors of the order degree of dolomite are discussed. The conclusions obtained as follows: ①The order degree of dolomite is related to its crystallinity. For example, the order degree of the dolomite with ethereal and relatively large crystals is higher than that of micritic dolomite. ②The lower the molar percentage of CaCO3 in dolomite is, the higher the order degree of the dolomite is. ③ The order degree of dolomite undergone dolomitization completely is higher than that undergone incompletely dolomitization. ④In all controlling factors, including other mineralogical elements, crystalline temperature is the most important one. For instance, the order degree of dolomite which formed in high temperature is higher than that formed in lowtemperature. As a result, in regard to dolomitization mechanism, the order degree of dolomite associated with penecontemporaneous dolomitization (seepage reflux dolomitization, evaporationpump dolomitization and so on) is low, while the order degree of dolomite connected with burial dolomitization is high and the order degree of dolomite concerned with dorag dolomitization maybe among the above two.

Key words: buried hills evolution, classification, balanced geological section, Budate Group, Beier Depression

[1] 雷怀彦,朱莲芳.四川盆地震旦系白云岩成因研究[J].沉积学报,1992,10(2):69-77.
[2] 史基安.塔里木盆地西北缘震旦系和古生代白云岩成因及其储集性[J].沉积学报,1993,11(2):43-50.
[3] 朱井泉,李永铁.藏北羌塘盆地侏罗系白云岩类型、成因及油气储层特征[J].古地理学报,2000,2(4):30-42.
[4] 王少飞,杨奕华,徐雁前,等.陕甘宁盆地定边地区奥陶系巨厚白云岩体的成因分析[J].天然气地球科学,1996,7(3):14-22.
[5] 张永生.鄂尔多斯地区奥陶系马家沟群中部块状白云岩的深埋藏白云石化机制[J].沉积学报,2000,18(3):424-430.
[6] Fuchtbauer H. Sediments and sedimentary rocks 1 [M]∥Engelhardt W V,Fuchtbauer H,Muller G. Sedimentary petrology. New York-Toronto-Sydney:Halsted Press Division,John Wiley & Sons,Inc.,1974:303-305.
[7] 黄思静.四川渠县龙门峡三叠系嘉陵江组第三、四段白云石有序度及其形成条件探讨[J].矿物岩石,1985,5(4):57-62.
[8] 穆曙光,周茂,华永川.川东北地区下三叠统飞仙关组白云岩成因类型[J].天然气工业,1994,14(3):23-27.
[9] 曾理,万茂霞,彭英.白云石有序度及其在石油地质中的应用[J]. 天然气勘探与开发,2004,27(4):64-66.
[10] 刘永福,殷军,孙雄伟,等.塔里木盆地东部寒武系沉积特征及优质白云岩储层成因[J].天然气地球科学,2008,19(1):126-132.
[11] 胡明毅,贾振远.塔里木柯坪地区下丘里塔格群白云岩成因[J]. 江汉石油学院学报,1991,13(2):10-17.
[12] 王尚彦,杨家騄. 贵州松桃桃子坪娄山关组白云岩X 衍射特征及意义[J].贵州地质,1999,59(2):141-143.
[13] 杨威,王清华,刘效曾.塔里木盆地和田河气田下奥陶统白云岩成因[J]. 沉积学报,2000,18(4):544-548.
[14] 何莹,鲍志东,沈安江,等.塔里木盆地牙哈—英买力地区寒武系—下奥陶统白云岩形成机理[J].沉积学报,2006,24(6):806-818.
[15] 李凌,谭秀成,陈景山,等.塔中北部中下奥陶统鹰山组白云岩特征及成因[J].西南石油大学学报,2007,29(1):34-36.
[10] 于炳松,赖兴运,高志前.克拉2 气田砂岩储层中成岩方解石—白云石的平衡及其对储层质量的影响[J].自然科学进展,2007,17(3):339-345.
[17] 曾伟,黄先平,杨雨,等.川东北下三叠统飞仙关组白云岩成因及分布[J].西南石油大学报,2007,29(1):19-23.
[18] 陈永权,周新源,赵葵东,等.塔里木盆地塔中1 井藻纹层白云岩与竹叶状白云岩成因[J].地质学报,2008,82(6):826-834.
[19] 李军鹏,伊海生,林金辉,等.青藏高原沱沱河地区新生代湖相白云岩特征及其环境意义[J].湖泊科学,2008,20(5):613-622.
[20] 戴朝成,郑荣才,文华国,等.辽东湾盆地沙河街组湖相白云岩成因研究[J].成都理工大学学报,2008,35(2):187-193.
[21] 冯仁蔚,王兴志,张帆,等.川西南周公山及邻区下二叠统碳酸盐岩成岩作用对储集性的影响[J].地质找矿论丛,2008,23(3):223-229.
[22] 康玉柱. 塔里木盆地塔河油田的发现与勘探———中国海相油气田勘探实例之四[J].海相油气地质,2005,10(4):31-38.
[23] 焦方正,翟晓先.海相碳酸盐岩非常规大油气田———塔河油田勘探研究与实践[M].北京:石油工业出版社,2008:7-16.
[24] 黄思静,Qing Hairuo,裴昌蓉,等.川东三叠系飞仙关组白云岩锶含量、锶同位素组成与白云岩化流体[J].岩石学报,2006,22(8): 2 123-2 132.
[25] 黄思静.碳酸盐岩实验研究方法(一)[J].矿物岩石,1990,10(1):114-117.
[26] 黄翠蓉,张光荣,王英华.我国部分地区白云岩岩石矿物学研究及其意义[J]. 地质论评,1987,33(5):449-461.
[27] 邓敏,钱光人,唐明述.白云石晶体的有序度与去白云石化反应[J].南京化工大学学报,2001,23(1):1-5.
[28] 刘宝珺.沉积岩石学[M]. 北京:地质出版社,1980:208-209.
[29] Zhao W Z,Luo P,Chen G S,et al. Origin and reservoir rock characteristics of dolostones on the early Triassic Feixiangan Formation,NE Sichuan Basin,China:Significance for future gas exploration[J]. Journal of Petroleum Geology,2005,28(1):83-100.
[1] CHEN Kang, DAI Juncheng, WEI Wei, LIU Weifang, YAN Yuanyuan, XI Cheng, LYU Yan, YANG Guangguang. Lithofacies classification of tight sandstone based on Bayesian Facies-AVO attributes:A case study of the first member of Jurassic Shaximiao Formation in central Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 111-121.
[2] XIA Mingjun, SHAO Xinjun, YANG Hua, WANG Zhongsheng, LI Zhiyu, ZHANG Chaoqian, YUAN Ruier, FA Guifang. Classification and categorization method of overseas lithologic reservoir reserves [J]. Lithologic Reservoirs, 2023, 35(6): 37-44.
[3] YE Tao, NIU Chengmin, WANG Qingbin, GAO Kunshun, SUN Zhe, CHEN Anqing. Identification of metamorphite lithology in paleo buried hill by compositionstructure classification: A case study from Archean in Bohai Sea [J]. Lithologic Reservoirs, 2021, 33(6): 156-164.
[4] XIANG Xuebing, SIMA Liqiang, WANG Liang, LI Jun, GUO Yuhao, ZHANG Hao. Pore fluid division and effective pore size calculation of shale gas reservoir: A case study of Longtan Formation in Sichuan Basin [J]. Lithologic Reservoirs, 2021, 33(4): 137-146.
[5] LU Fengming, CAI Mingjun, ZHANG Yang, NI Tianlu, XIAO Xihang. Discussion on architecture classification scheme and research methods of clastic reservoir [J]. Lithologic Reservoirs, 2020, 32(6): 1-11.
[6] HE Jian, WU Gang, NIE Wenliang, LIU Songming, HUANG Wei. Fracture classification method based on proximal support vector machine [J]. Lithologic Reservoirs, 2020, 32(2): 115-121.
[7] LI Juan, SUN Songling, CHEN Guangpo, ZHANG Bin, HONG Liang, HE Weiwei. Controlling of epimetamorphic rock lithology on basement reservoir and identification of lithological sequence of reservoir in Hailar Basin [J]. Lithologic Reservoirs, 2018, 30(4): 26-36.
[8] SHI Zhanzhan, WANG Yuanjun, TANG Xiangrong, PANG Su, CHI Yuelong. Reservoir prediction based on seismic waveform classification in time-frequency domain [J]. Lithologic Reservoirs, 2018, 30(4): 98-104.
[9] YIN Daiyin, XIANG Junhui, WANG Dongqi. Classification of Fuyang oil reservoir with ultra-low permeability around placanticline of Daqing Oilfield [J]. Lithologic Reservoirs, 2018, 30(1): 150-154.
[10] CHE Shiqi. Shale lithofacies identification and classification by using logging data: a case of Wufeng-Longmaxi Formation in Fuling Gas Field,Sichuan Basin [J]. Lithologic Reservoirs, 2018, 30(1): 121-132.
[11] LIU Hangyu, TIAN Zhongyuan, XU Zhenyong. Quantitative evaluation of carbonate reservoir pore structure based on fractal characteristics [J]. Lithologic Reservoirs, 2017, 29(5): 97-105.
[12] GE Xiaobo, LI Jijun, LU Shuangfang, CHEN Fangwen, YANG Dexiang, WANG Quan. Fractal characteristics of tight sandstone reservoir using mercury intrusion capillary pressure:a case of tight sandstone reservoir in Jizhong Depression [J]. Lithologic Reservoirs, 2017, 29(5): 106-112.
[13] SIMA Liqiang, CHEN Zhiqiang, WANG Liang, FAN Ling, CHEN Hebin, FU Yonghong. Permeability modeling based on the classification of beach-controlled karst dolomite reservoirs: a case from Longwangmiao Formation in Moxi-Gaoshiti area, central Sichuan Basin [J]. Lithologic Reservoirs, 2017, 29(3): 92-102.
[14] WANG Dongqi, YIN Daiyin. Empirical formulas of relative permeability curve of water drive reservoirs [J]. Lithologic Reservoirs, 2017, 29(3): 159-164.
[15] YANG Xipu, YANG Xiaoli, LIU Jun, FANG Lei, ZOU Jingyun. Application of integrated reservoir classification method to the quantitative characterization of heterogeneity reservoir [J]. Lithologic Reservoirs, 2017, 29(1): 124-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Qinlian, ZHENG Rongcai, XIAO Ling,WANG Chengyu, NIU Xiaobing. Influencing factors and characteristics of Chang 6 reservoir in Wuqi area, Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(4): 45 -50 .
[2] WANG Dongqi, YIN Daiyin. Empirical formulas of relative permeability curve of water drive reservoirs[J]. Lithologic Reservoirs, 2017, 29(3): 159 -164 .
[3] LI Yun, SHI Zhiqiang. Study on fluid inclusion of tight sandstone reservoir of Upper Triassic Xujiahe Formation in central Sichuan Basin[J]. Lithologic Reservoirs, 2008, 20(1): 27 -32 .
[4] JIANG Ren, FAN Tailiang, XU Shouli. Concept and techniques of seismic geomorphology[J]. Lithologic Reservoirs, 2008, 20(1): 33 -38 .
[5] ZOU Mingliang, HUANG Sijing, HU Zuowei, FENG Wenli, LIU Haoniannian. The origin of carbonate cements and the influence on reservoir quality of Pinghu Formation in Xihu Sag, East China Sea[J]. Lithologic Reservoirs, 2008, 20(1): 47 -52 .
[6] WANG Bingjie, HE Sheng, NI June, FANG Du. Activity analysis of main faults in Qianquan area, Banqiao Sag[J]. Lithologic Reservoirs, 2008, 20(1): 75 -82 .
[7] CHEN Zhenbiao, ZHANG Chaomo, ZHANG Zhansong, LING Husong, SUN Baodian. Using NMR T2 spectrum distribution to study fractal nature of pore structure[J]. Lithologic Reservoirs, 2008, 20(1): 105 -110 .
[8] ZHANG Houfu, XU Zhaohui. Discussion on stratigraphic-lithologic reservoirs exploration in the aspect of the research history of reservoirs[J]. Lithologic Reservoirs, 2008, 20(1): 114 -123 .
[9] ZHANG Xia. Cultivation of exploration creativity[J]. Lithologic Reservoirs, 2007, 19(1): 16 -20 .
[10] YANG Wuyang, YANG Wencai, LIU Quanxin, WANG Xiwen. 3D frequency and space domain amplitude-preserved migration with viscoelastic wave equations[J]. Lithologic Reservoirs, 2007, 19(1): 86 -91 .
TRENDMD: