Lithologic Reservoirs ›› 2017, Vol. 29 ›› Issue (2): 117-124.doi: 10.3969/j.issn.1673-8926.2017.02.014

Previous Articles     Next Articles

Formation mechanism of deep high-quality reservoirs of Yingcheng Formation in Longfengshan area,Songliao Basin

LIU Xixiang1,2, ZHANG Shaonan1,2, YANG Peng3, ZHANG Yongmei1, HE Hao4   

  1. 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
    2. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
    3. Research Institute of Exploration and Development, Sinopec Southwest Oil & Gas Company, Chendu 610041, China;
    4. No. 2 Oil Production Plant, PetroChina Changqing Oilfield Company, Xifeng 745600, Gansu, China
  • Received:2016-08-09 Revised:2016-09-02 Online:2017-03-21 Published:2017-03-21

Abstract: With the new exploration development of Longfengshan area in Changling graben,it is proved that the Yingcheng Formation with burial deeper than 3 000 m has favorable gas exploration potential. Although commercial oil and gas flow was produced in several wells,the formation mechanism and controlling factors for high-quality reservoirs remained undefined. Based on the data of core observation,casting thin sections,computed tomography(CT)scanning,physical properties testing and constant-rate mercury penetration,the formation mechanism and controlling factors for high-quality reservoirs were analyzed. The results show that the reservoir property in the study area is mainly controlled by diagenesis. According to this,the reservoirs were divided into compacted tight sandstone,chlorite-cemented sandstone and laumontite-cemented sandstone. The distribution of cementation and dissolution shows the characteristics of obvious zonation under the control of fresh water filling and lake water. The distribution model of various types of sandstones was established. During the middle diagenetic stage,the laumontite was dissolved by organic acids produced by source rock,and formed high-quality reservoirs in outer skirt of the fan delta front,which is the “sweet point” for the further hydrocarbon exploration.

CLC Number: 

  • TE122.2
[1] AJDUKIEWICZ J M,LARESE R E. How clay grain coats inhibit quartz cement and preserve porosity in deeply buried sandstones: observations and experiments. AAPG Bulletin,2012,96 (11):2091-2119.
[2] CHUHAN F A,BJØRLYKKE K,LOWREY C. The role of provenance in illitization of deeply buried reservoir sandstones from Haltenbanken and north Viking Graben,offshore Norway. Marine & Petroleum Geology,2000,17(6):673-689.
[3] FRENCH M W,WORDEN R H,MARIANI E,et al. Microcrystalline quartz generation and the preservation of porosity in sandstones:evidence from the Upper Cretaceous of the Subhercynian Basin,Germany. Journal of Sedimentary Research,2012, 82(6):422-434.
[4] BLOCH S,LANDER R H,BONNELL L. Anomalously high porosity and permeability in deeply buried sandstone reservoirs: origin and predictability.AAPG Bulletin,2002,86(2):301-328.
[5] TAYLOR T R,GILES M R,HATHON L A,et al. Sandstone diagenesis and reservoir quality prediction:models,myths,and reality. AAPG Bulletin,2010,94(8):1093-1132.
[6] YANG P,DING X Q,HAN M M,et al. Deep reservoir quality prediction using diagenesis:a case study from Zhanjiaduo Oilfield of Subei Basin,China. Arabian Journal of Geosciences, 2016,9(3):1-12.
[7] EHRENBERG S N,NADEAU P H,STEEN Ø. A megascale view of reservoir quality in producing sandstones from the offshore Gulf of Mexico. AAPG Bulletin,2008,92(2):145-164.
[8] 闫建平,言语,李尊芝,等. 砂砾岩储层物性演化及影响因素 研究——以东营凹陷北部陡坡带为例. 岩性油气藏,2016,28 (2):1-6. YAN J P,YAN Y,LI Z Z,et al. Physical property evolution of glutenite reservoir and its influencing factors:a case study from northern steep slope zone in Dongying Sag. Lithologic Reservoirs, 2016,28(2):1-6.
[9] AJDUKIEWICZ J M,LANDER R H. Sandstone reservoir quality prediction:the state of the art. AAPG Bulletin,2010,94(8): 1083-1091.
[10] STORVOLL V,BJØRLYKKE K,KARLSEN D,et al. Porosity preservation in reservoir sandstones due to grain-coating illite: a study of the Jurassic Garn Formation from the Kristin and Lavrans fields,offshore Mid-Norway. Marine & Petroleum Geology, 2002,19(6):767-781.
[11] 葛荣峰,张庆龙,徐士银,等. 松辽盆地长岭断陷构造演化及 其动力学背景.地质学刊,2009,33(4):346-358. GE R F,ZHANG Q L,XU S Y,et al. Structural evolution and its kinetic setting of Changling Fault Depression in Songliao Basin. Journal of Geology,2009,33(4):346-358.
[12] 李易隆,贾爱林,吴朝东. 松辽盆地长岭断陷致密砂岩成岩作 用及其对储层发育的控制. 石油实验地质,2014,36(6):698-705. LI Y L,JIA A L,WU C D. Diagenesis of tight sandstones and its controls on reservoirs genesis,Changling Faulted Depression, Songliao Basin. Petroleum Geology & Experiment,2014, 36(6):698-705.
[13] 李浩,陆建林,王保华,等. 长岭断陷南部地区断陷层油气成 藏机制及勘探潜力. 中国石油大学学报(自然科学版),2016, 40(3):44-54. LI H,LU J L,WANG B H,et al. Reservoir-forming mechanism and its exploration potential of Songliao Basin in the southern area of Changling Depression. Journal of China University of Petroleum(Edition of Natural Science),2016,40(3):44-54.
[14] 郭巍,于文祥,刘招君,等. 松辽盆地南部埋藏史. 吉林大学学 报(地球科学版),2009,39(3):353-360. GUO W,YU W X,LIU Z J,et al. The burial history of the southern Songliao Basin. Journal of Jilin University(Earth Science Edition),2009,39(3):353-360.
[15] 李浩,陆建林,左宗鑫,等. 长岭断陷南部断陷层湖相优质烃 源岩发育控制因素.石油与天然气地质,2015,36(2):209-218. LI H,LU J L,ZUO Z X,et al. Controlling factors of high-quality lacustrine hydrocarbon source rocks in southern Changling Depression. Oil & Gas Geology,2015,36(2):209-218.
[16] 秦都,黄桂雄,李瑞磊,等. 松辽盆地南部断陷层碎屑岩天然 气成藏主控因素分析——以长岭断陷龙凤山次凹为例. 中国 石油勘探,2016,21(3):52-61. QIN D,HUANG G X,LI R L,et al. Main controlling factors for gas accumulation in clastic rocks in fault depression,southern Songliao Basin:a case study on Longfengshan sub-sag, Changling fault depression. China Petroleum Exploration,2016, 21(3):52-61.
[17] 丁晓琪,张哨楠,葛鹏莉,等. 鄂尔多斯盆地东南部延长组储 层成岩体系研究. 沉积学报,2011,29(1):97-104. DING X Q,ZHANG S N,GE P L,et al. Research on diagenesis system of Yanchang Formation reservoirs,southeast Ordos Basin. Acta Sedimentologica Sinica,2011,29(1):97-104.
[18] 杨雪飞,王兴志,张哨楠,等. 川西北厚坝地区油砂储层特征 及成岩作用分析. 岩性油气藏,2013,25(5):59-64. YANG X F,WANG X Z,ZHANG S N,et al. Oil sand reservoir characteristics and diagenesis in Houba area,northwestern Sichuan. Lithologic Reservoirs,2013,25(5):59-64.
[19] DING X Q,YANG P,HAN M M,et al. Characteristics of gas accumulation in a less efficient tight-gas reservoir,He 8 interval, Sulige gas field,Ordos Basin,China. Russian Geology & Geophysics,2016,57(7):1064-1077.
[20] 孟元林,梁洪涛,魏巍,等. 浊沸石溶蚀过程的热力学计算与 次生孔隙发育带预测——以徐家围子断陷深层为例. 沉积学 报,2013,31(3):509-515. MENG Y L,LIANG H T,WEI W,et al. Thermodynamic calculations of the laumontite dissolution and prediction of secondary porosity zones:a case study of horizon of Xujiaweizi Fault Depression. Acta Sedimentologica Sinica,2013,31(3):509-515.
[21] 陈亦寒,刘大锰,魏喜,等. 海外河油田东营组自生沸石的发 现成因及其地质意义. 石油天然气学报(江汉石油学院学 报),2008,30(4):54-56. CHEN Y H,LIU D M,WEI X,et al. Discovery and origin of the diagenetic zeolite in Dongying Formation of Haiwaihe Oilfield and its geological significance. Journal of Oil and Gas Technology(Journal of Jianghan Petroleum Institute),2008,30(4): 54-56.
[22] 黄思静,刘洁,沈立成,等. 碎屑岩成岩过程中浊沸石形成条 件的热力学解释. 地质论评,2001,47(3):301-308. HUANG S J,LIU J,SHEN L C,et al. Thermodynamic interpretation for the conditions of the formation of laumonite related to clastic diagenesis. Geological Review,2001,47(3):301-308.
[23] 杨晓萍,张宝民,雷振宇,等. 含油气盆地中浊沸石的形成与 分布及其对油气勘探的意义.中国石油勘探,2006,11(2):33-38. YANG X P,ZHANG B M,LEI Z Y,et al. Formation and distribution of laumonitide cement in petroliferous basin and its significance for oil-gas exploration. China Petroleum Exploration, 2006,11(2):33-38.
[24] WOPFNER H,MARKWORT S,SEMKIWAP M. Early diagenetic laumontite in the lower Triassic Manda beds of the Ruhuhu Basin,Southern Tanzania. Journal of Sedimentary Research, 1991,61(1):65-72.
[25] 王成,邵红梅,洪淑新,等. 松辽盆地北部深层碎屑岩浊沸石 成因、演化及与油气关系研究. 矿物岩石地球化学通报, 2004,23(3):213-218. WANG C,SHAO H M,HONG S X,et al. Formation and evolution of laumontite and relationship between oil and gas in the clastic rock of the deep strata of the north Songliao Basin. Bulletin of Mineralogy,Petrology and Geochemistry,2004,23(3): 213-218.
[26] 杨晓萍,裘怿楠. 鄂尔多斯盆地上三叠统延长组浊沸石的形 成机理、分布规律与油气关系. 沉积学报,2002,20(4):628-632. YANG X P,QIU Y N. Formation process and distribution of laumontite in Yanchang Formation(Upper Triassic)of Ordos Basin. Acta Sedimentologica Sinica,2002,20(4):628-632.
[27] 张雪花,黄思静,兰叶芳,等. 浊沸石溶解过程的热力学计算 及地质意义.岩性油气藏,2011,23(2):64-69. ZHANG X H,HUANG S J,LAN Y F,et al. Thermodynamic calculation of laumontite dissolution and its geologic significance. Lithologic Reservoir,2011,23(2):64-69.
[28] 梁浩,罗权生,孔宏伟,等. 三塘湖盆地火山岩中沸石的成因 及其储层意义.沉积学报,2011,29(3):537-543. LIANG H,LUO Q S,KONG H W,et al. Formation and distribution of zeolite in volcanic rock and its effect on reserviors in Santanghu Basin. Acta Sedimentologica Sinica,2011,29(3):537-543.
[29] 付国民,董满仓,张志升,等. 浊沸石形成与分布及其对优质 储层的控制作用:以陕北富县探区延长组长3 油层为例. 地 球科学——中国地质大学学报,2010,35(1):107-114. FU G M,DONG M C,ZHANG Z S,et al. Formation process and distribution of laumontite in Yanchang 3 reservoir of Fuxian exploration area in north Shaanxi Province and the controls of the high quality reservoirs. Earth Science—Journal of China University of Geosciences,2010,35(1):107-114.
[30] 杨威,魏国齐,赵杏媛,等. 碎屑岩储层中自生绿泥石衬边能 抑制石英次生加大吗?——以四川盆地须家河组砂岩储层 为例. 石油学报,2013,34(增刊1):128-135. YANG W,WEI G Q,ZHAO X Y,et al. Can authigenic porelining chlorite restrain quartz overgrowth in clastic reservoir? a case study of sandstone reservoir in Xujiahe Formation,Sichuan Basin. Acta Petrolei Sinica,2013,34(Suppl 1):128-135.
[1] YU Qixiang, LUO Yu, DUAN Tiejun, LI Yong, SONG Zaichao, WEI Qingliang. Reservoir forming conditions and exploration prospect of Jurassic coalbed methane encircling Dongdaohaizi sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(6): 45-55.
[2] YIN Lu, LI Bo, QI Wen, SUN Dong, YUE Xingfu, MA Hui. Origins and accumulation characteristics of large-scale generation of natural hydrogen [J]. Lithologic Reservoirs, 2024, 36(6): 1-11.
[3] XIAO Boya. Characteristics and favorable zone distribution of tuff reservoirt of Cretaceous in A’nan sag,Erlian Basin [J]. Lithologic Reservoirs, 2024, 36(6): 135-148.
[4] WANG Zixin, LIU Guangdi, YUAN Guangjie, YANG Henglin, FU Li, WANG Yuan, CHEN Gang, ZHANG Heng. Characteristics and reservoir control of source rocks of Triassic Chang 7 member in Qingcheng area,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(5): 133-144.
[5] WEI Chenglin, ZHANG Fengqi, JIANG Qingchun, LU Xuesong, LIU Gang, WEI Yanzhao, LI Shubo, JIANG Wenlong. Formation mechanism and evolution characteristics of overpressure in deep Permian in eastern Fukang Sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(5): 167-177.
[6] ZHANG Xiaoli, WANG Xiaojuan, ZHANG Hang, CHEN Qin, GUAN Xu, ZHAO Zhengwang, WANG Changyong, TAN Yaojie. Reservoir characteristics and main controlling factors of Jurassic Shaximiao Formation in Wubaochang area,northeastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 87-98.
[7] SHEN Youyi, WANG Kaifeng, TANG Shuheng, ZHANG Songhang, XI Zhaodong, YANG Xiaodong. Geological modeling and“sweet spot”prediction of Permian coal measures shale reservoirs in Yushe-Wuxiang block,Qinshui Basin [J]. Lithologic Reservoirs, 2024, 36(4): 98-108.
[8] WANG Tongchuan, CHEN Haoru, WEN Longbin, QIAN Yugui, LI Yuzhuo, WEN Huaguo. Identification and reservoir significance of Carboniferous karst paleogeomorphology in Wubaiti area,eastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(4): 109-121.
[9] TIAN Ya, LI Junhui, CHEN Fangju, LI Yue, LIU Huaye, ZOU Yue, ZHANG Xiaoyang. Tight reservoir characteristics and favorable areas prediction of Lower Cretaceous Nantun Formation in central fault depression zone of Hailar Basin [J]. Lithologic Reservoirs, 2024, 36(4): 136-146.
[10] ZHU Biao, ZOU Niuniu, ZHANG Daquan, DU Wei, CHEN Yi. Characteristics of shale pore structure and its oil and gas geological significance of Lower Cambrian Niutitang Formation in Fenggang area,northern Guizhou [J]. Lithologic Reservoirs, 2024, 36(4): 147-158.
[11] XIA Maolong, ZHANG Benjian, ZENG Yiyang, JIA Song, ZHAO Chunni, FENG Mingyou, LI Yong, SHANG Junxin. Main controlling factors and distribution of reservoirs of the second member of Sinian Dengying Formation in Penglai gas field,central Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(3): 50-60.
[12] SHAO Wei, ZHOU Daorong, LI Jianqing, ZHANG Chengcheng, LIU Tao. Key factors and favorable exploration directions for oil and gas enrichment in back margin sag of thrust nappe in Lower Yangtze [J]. Lithologic Reservoirs, 2024, 36(3): 61-71.
[13] HE Wenyuan, ZHAO Ying, ZHONG Jianhua, SUN Ningliang. Characteristics and significance of micron pores and micron fractures in shale oil reservoirs of Cretaceous Qingshankou Formation in Gulong sag,Songliao Basin [J]. Lithologic Reservoirs, 2024, 36(3): 1-18.
[14] JI Yubing, GUO Bingru, MEI Jue, YIN Zhijun, ZOU Chen. Fracture modeling of shale reservoirs of Silurian Longmaxi Formation in Luobu syncline in Zhaotong National Shale Gas Demonstration Area, southern margin of Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(3): 137-145.
[15] LEI Tao, MO Songyu, LI Xiaohui, JIANG Nan, ZHU Chaobin, WANG Qiao, QU Xuejiao, WANG Jia. Sandbody superimposition patterns and oil and gas exploration significance of Permian Shanxi Formation in Daniudi gas field,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(2): 147-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Qinlian, ZHENG Rongcai, XIAO Ling,WANG Chengyu, NIU Xiaobing. Influencing factors and characteristics of Chang 6 reservoir in Wuqi area, Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(4): 45 -50 .
[2] WANG Dongqi, YIN Daiyin. Empirical formulas of relative permeability curve of water drive reservoirs[J]. Lithologic Reservoirs, 2017, 29(3): 159 -164 .
[3] LI Yun, SHI Zhiqiang. Study on fluid inclusion of tight sandstone reservoir of Upper Triassic Xujiahe Formation in central Sichuan Basin[J]. Lithologic Reservoirs, 2008, 20(1): 27 -32 .
[4] JIANG Ren, FAN Tailiang, XU Shouli. Concept and techniques of seismic geomorphology[J]. Lithologic Reservoirs, 2008, 20(1): 33 -38 .
[5] ZOU Mingliang, HUANG Sijing, HU Zuowei, FENG Wenli, LIU Haoniannian. The origin of carbonate cements and the influence on reservoir quality of Pinghu Formation in Xihu Sag, East China Sea[J]. Lithologic Reservoirs, 2008, 20(1): 47 -52 .
[6] WANG Bingjie, HE Sheng, NI June, FANG Du. Activity analysis of main faults in Qianquan area, Banqiao Sag[J]. Lithologic Reservoirs, 2008, 20(1): 75 -82 .
[7] CHEN Zhenbiao, ZHANG Chaomo, ZHANG Zhansong, LING Husong, SUN Baodian. Using NMR T2 spectrum distribution to study fractal nature of pore structure[J]. Lithologic Reservoirs, 2008, 20(1): 105 -110 .
[8] ZHANG Houfu, XU Zhaohui. Discussion on stratigraphic-lithologic reservoirs exploration in the aspect of the research history of reservoirs[J]. Lithologic Reservoirs, 2008, 20(1): 114 -123 .
[9] ZHANG Xia. Cultivation of exploration creativity[J]. Lithologic Reservoirs, 2007, 19(1): 16 -20 .
[10] YANG Wuyang, YANG Wencai, LIU Quanxin, WANG Xiwen. 3D frequency and space domain amplitude-preserved migration with viscoelastic wave equations[J]. Lithologic Reservoirs, 2007, 19(1): 86 -91 .
TRENDMD: