Lithologic Reservoirs ›› 2017, Vol. 29 ›› Issue (3): 118-125.doi: 10.3969/j.issn.1673-8926.2017.03.014

Previous Articles     Next Articles

Influence of overlying horizontal stratum on seismic amplitude of target zone

DENG Shuai, LIU Xuewei, WANG Xiangchun   

  1. School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China
  • Received:2016-09-12 Revised:2017-01-03 Online:2017-05-21 Published:2017-05-21

Abstract: Seismic amplitude is an important parameter to identify the lithology of target zone, however, it is greatly affected by overlying stratum. Based on the forward modeling, the numerical simulation of two-way wave equation was applied to study the amplitude change of seismic wave when it travels through the overlying stratum with different velocity and scale, and the relationship between the overlying stratum structure and seismic amplitude of the target zone was discussed. By building high ordered staggered-grid finite difference algorithm containing PML (perfect matching layer)attenuation coefficient and using GPU parallel acceleration, the amplitude change regularity of the target zone of 3D layered velocity model was defined. The experiment results show that the amplitude of the target zone will change accordingly with the change of reflection coefficient of the overlying stratum, and it will change abnormally especially when the reflection coefficient of overlying stratum tends to be consistent. This study results are favorable for correct lithology identification by seismic data.

Key words: coalbed methane, sedimentary facies, controlling factors of coal accumulation, tectonic- palaeogeography, Xuanwei Formation, Junlian area

CLC Number: 

  • P315.0
[1] 熊翥.地层岩性油气藏勘探.岩性油气藏, 2008, 20(4):1-8. XIONG Z. Exploration of stratigraphic-lithologic reservoirs. Lithologic Reservoirs, 2008, 20(4):1-8.
[2] 桑怀飞, 毕阿欣, 杨世洲.地震勘探仪器数据传输分析.物探装备, 2015, 25(6):372-374. SANG H F, BI A X, YANG S Z. Analysis of seismic data transmission. Equipment for Geophysical Prospecting, 2015, 25(6):372-374.
[3] 王肃静, 卢川, 游庆瑜, 等.一种低成本无缆地震仪采集站的研制.地球物理学报, 2015, 58(4):1425-1433. WANG S J, LU C, YOU Q Y, et al. Design of a low cost noncable seismic acquisition station. Chinese Journal of Geophysics, 2015, 58(4):1425-1433.
[4] 凌云研究组.叠前相对保持振幅、频率、相位和波形的地震数据处理与评价研究. 石油地球物理勘探, 2004, 39(5):543-552. LING YUN Research Group. Study of seismic data processing and appreciation based on prestack relative preservation of amplitude, frequency, phase and waveform. Oil Geophysical Prospecting, 2004, 39(5):543-552.
[5] 刘建红, 孟小红, 程玉坤.针对叠前反演的去噪技术.石油勘探与开发, 2007, 34(6):718-723. LIU J H, MENG X H, CHENG Y K. Pre-stack inversion oriented noise attenuation. Petroleum Exploration and Development, 2007, 34(6):718-723.
[6] 刘东奇, 常旭, 卢孟夏. 目标函数叠前保幅偏移方法与应用. 地球物理学报, 2006, 49(4):1150-1154. LIU D Q, CHANG X, LU M X. Objective function prestack amplitude preserving migration and its application. Chinese Journal of Geophysics, 2006, 49(4):1150-1154.
[7] 张志军, 周东红, 孙成禹, 等.基于三维模型数据的地震振幅补偿处理技术的保幅性分析. 物探与化探, 2015, 39(3):621-626. ZHANG Z J, ZHOU D H, SUN C Y, et al. An analysis of the amplitude preservation of seismic amplitude compensation processing technology based on 3D model data. Geophysical and Geochemical Exploration, 2015, 39(3):621-626.
[8] 李振春, 朱绪峰, 韩文功, 等.真振幅偏移方法综述.勘探地球物理进展, 2008, 31(1):10-15. LI Z C, ZHU X F, HAN W G, et al. Review of true-amplitude migration methods. Progress in Exploration Geophysics, 2008, 31(1):10-15.
[9] 郭树祥. 地震资料保幅处理的讨论. 油气地球物理, 2009, 7(1):1-7. GUO S X. Discussion of preserved amplitude processing of seismic data. Petroleum Geophysics, 2009, 7(1):1-7.
[10] 王丹, 孙赞东, 王迪, 等.基于模型数据的不同反褶积方法保幅性分析.石油地球物理勘探, 2013, 48(3):359-365. WANG D, SUN Z D, WANG D, et al. Analysis of the amplitude preservation of deconvolution methods based on physical model data. Oil Geophysical Prospecting, 2013, 48(3):359-365.
[11] 邓帅, 刘学伟, 尤佳春, 等.上覆地层形态对目的层成像振幅的影响.科学技术与工程, 2016, 16(31):51-56. DENG S, LIU X W, YOU J C, et al. Influence of overlying stratum on amplitude imaging of target interval. Science Technology and Engineering, 2016, 16(31):51-56.
[12] 陈生昌, 马在田, 吴如山.波动方程双程地下方向照明分析. 同济大学学报(自然科学版), 2007, 35(5):681-684. CHEN S C, MA Z T, WU R S. Two-way subsurface directional illumination analysis by wave equation. Journal of Tongji University(Natural Science), 2007, 35(5):681-684.
[13] 陈可洋, 陈树民, 李来林, 等.地震波动方程方向行波波场分离正演数值模拟与逆时成像.岩性油气藏, 2014, 26(4):130-136. CHEN K Y, CHEN S M, LI L L, et al. Directional one-way wave field separating numerical simulation of the seismic wave equation and reverse-time migration. Lithologic Reservoirs, 2014, 26(4):130-136.
[14] 陈可洋. 各向异性弹性介质方向行波波场分离正演数值模拟.岩性油气藏, 2014, 26(5):91-96. CHEN K Y. Wave field separating numerical simulation of anisotropic elastic medium directional one-way wave. Lithologic Reservoirs, 2014, 26(5):91-96.
[15] 辛维, 闰子超, 梁文全, 等.用于弹性波方程数值模拟的有限差分系数确定方法.地球物理学报, 2015, 58(7):2486-2495. XIN W, YAN Z C, LIANG W Q, et al. Methods to determine the finite difference coefficients for elastic wave equation modeling. Chinese Journal of Geophysics, 2015, 58(7):2486-2495.
[16] BERENGER J P. A perfectly matched layer for absorption of electromagnetic waves. Journal of Computational Physics, 1994, 114:185-200.
[17] LI X F. PML absorbing boundary condition for seismic numerical modeling by convolutional differentiator in fluid-saturated porous media. Journal of Earth Science, 2011, 22(3):377-385.
[18] 丁科.PML吸收边界条件影响因素分析.物探与化探, 2012, 36(4):623-627. DING K. An analysis of factors affecting PML absorbing boundary condition. Geophysical and Geochemical Exploration, 2012, 36(4):623-627.
[19] 陈可洋.完全匹配层吸收边界条件研究. 石油物探, 2010, 49(5):472-477. CHEN K Y. Study on perfectly matched layer absorbing boundary condition. Geophysical Prospecting for Petroleum, 2010, 49(5):472-477.
[20] MICHEA D, KOMATITSCH D. Accelerating a three-dimensional finite-difference wave propagation code using GPU graphics cards. Geophysical Journal International, 2010, 182(1):389-402.
[21] 龙桂华, 赵宇波, 李小凡, 等.三维交错网格有限差分地震波模拟的GPU集群实现.地球物理学进展, 2011, 26(6):1938-1949. LONG G H, ZHAO Y B, LI X F, et al. Accelerating 3D staggeredgrid finite-difference seismic wave modeling on GPU cluster. Progress in Geophysics, 2011, 26(6):1938-1949.
[22] 刘守伟, 王华忠, 陈生昌, 等.三维逆时偏移GPU/CPU机群实现方案研究.地球物理学报, 2013, 56(10):3487-3496. LIU S W, WANG H Z, CHEN S C, et al. Implementation strategy of 3D reverse time migration on GPU/CPU clusters. Chinese Journal of Geophysics, 2013, 56(10):3487-3496.
[1] YU Qixiang, LUO Yu, DUAN Tiejun, LI Yong, SONG Zaichao, WEI Qingliang. Reservoir forming conditions and exploration prospect of Jurassic coalbed methane encircling Dongdaohaizi sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(6): 45-55.
[2] LI Daoqing, CHEN Yongbo, YANG Dong, LI Xiao, SU Hang, ZHOU Junfeng, QIU Tingcong, SHI Xiaoqian. Intelligent comprehensive prediction technology of coalbed methane “sweet spot”reservoir of Jurassic Xishanyao Formation in Baijiahai uplift,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(6): 23-35.
[3] SHAO Wei, ZHOU Daorong, LI Jianqing, ZHANG Chengcheng, LIU Tao. Key factors and favorable exploration directions for oil and gas enrichment in back margin sag of thrust nappe in Lower Yangtze [J]. Lithologic Reservoirs, 2024, 36(3): 61-71.
[4] WANG Tianhai, XU Duonian, WU Tao, GUAN Xin, XIE Zaibo, TAO Huifei. Sedimentary facies distribution characteristics and sedimentary model of Triassic Baikouquan Formation in Shawan Sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(1): 98-110.
[5] WEI Jiayi, WANG Hongwei, LIU Gang, LI Han, CAO Qian. Sedimentary characteristics of Carboniferous Yanghugou Formation in thrust belt on the western margin of Ordos Basin [J]. Lithologic Reservoirs, 2023, 35(5): 120-130.
[6] FU Wenjun, ZHANG Changmin, JI Dongsheng, LOU Lin, LIU Jiale, WANG Xulong. Sedimentary characteristics of shallow water delta of Middle Jurassic Toutunhe Formation in southern Anjihai river outcrops,Junggar Basin [J]. Lithologic Reservoirs, 2023, 35(4): 145-160.
[7] LI Ling, ZHANG Zhaokun, LI Minglong, NI Jia, GENG Chao, TANG Sizhe, YANG Wenjie, TAN Xiucheng. Sequence stratigraphic characteristics and favorable reservoirs distribution of Permian Qixia Stage in Weiyuan-Gaoshiti area, Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(6): 32-46.
[8] YU Haibo. Tectonic characteristics and favorable exploration zones of Paleozoic in Dongpu Sag [J]. Lithologic Reservoirs, 2022, 34(6): 72-79.
[9] ZHU Zhiliang, GAO Xiaoming. Main controlling factors and models of Jurassic coalbed methane accumulation in Longdong coalfield [J]. Lithologic Reservoirs, 2022, 34(1): 86-94.
[10] REN Jie, HU Zhonggui, HU Mingyi, LI Xiong, PANG Yanrong, ZUO Mingtao, HUANG Yufei. Sedimentary facies characteristics and favorable reservoirs distribution of Lower Triassic Feixianguan Formation in Fuling area [J]. Lithologic Reservoirs, 2021, 33(6): 70-80.
[11] WEI Zhijie, KANG Xiaodong. A fully coupled fluid flow and geomechanics model for enhanced coalbed methane recovery [J]. Lithologic Reservoirs, 2021, 33(5): 181-188.
[12] ZHENG Rongchen, LI Hongtao, SHI Yunqing, XIAO Kaihua. Sedimentary characteristics and diagenesis of the third member of Triassic Xujiahe Formation in Yuanba area, northeastern Sichuan Basin [J]. Lithologic Reservoirs, 2021, 33(3): 13-26.
[13] ZHANG Wenting, LONG Liwen, XIAO Wenhua, WEI Haoyuan, LI Tiefeng, DONG Zhenyu. Sedimentary characteristics and reservoir prediction of Xiagou Formation in Kulongshan structural belt,Qingxi Sag,Jiuquan Basin [J]. Lithologic Reservoirs, 2021, 33(1): 186-197.
[14] LIU Mingming, WANG Quan, MA Shou, TIAN Zhongzheng, CONG Yan. Well placement optimization of coalbed methane based on hybrid particle swarm optimization algorithm [J]. Lithologic Reservoirs, 2020, 32(6): 164-171.
[15] PENG Jun, CHU Jiangtian, CHEN Youlian, WEN Jian, LI Yading, DENG Sisi. Sedimentary characteristics of Lower Cambrian Canglangpu Formation in Gaoshiti-Moxi area,Sichuan Basin [J]. Lithologic Reservoirs, 2020, 32(4): 12-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DUAN Tianxiang,LIU Xiaomei,ZHANG Yajun,XIAO Shuqin. Discussion on geologic modeling with Petrel[J]. Lithologic Reservoirs, 2007, 19(2): 102 -107 .
[2] ZHANG Liqiu. Optimization of upward strata combination of second class oil layer in eastern south Ⅱ area of Daqing Oilfield[J]. Lithologic Reservoirs, 2007, 19(4): 116 -120 .
[3] ZHANG Di,HOU Zhongjian,WANG Yahui,WANG Ying,WANG Chunlian. Sedimentary characteristics of lacustrine carbonate rocks of the first member of Shahejie Formation in Banqiao-Beidagang area[J]. Lithologic Reservoirs, 2008, 20(4): 92 -97 .
[4] FAN Huaicai, LI Xiaoping, DOU Tiancai, WU Xinyuan. Study on stress sensitivity effect on flow dynamic features of gas wells[J]. Lithologic Reservoirs, 2010, 22(4): 130 -134 .
[5] TIAN Shufang,ZHANG Hongwen. Application of life cycle theory to predict increasing trend of proved oil reserves in Liaohe Oilfield[J]. Lithologic Reservoirs, 2010, 22(1): 98 -100 .
[6] YANG Kai,GUO Xiao. Numerical simulation study of three-dimensional two-phase black oil model in fractured low permeability reservoirs[J]. Lithologic Reservoirs, 2009, 21(3): 118 -121 .
[7] ZHAI Zhongxi, QINWeijun, GUO Jinrui. Quantitative relations between oil-gas filling degree and channel seepage flow capacity of the reservoir:Example of Shuanghe Oilfield in Biyang Depression[J]. Lithologic Reservoirs, 2009, 21(4): 92 -95 .
[8] QI Minghui,LU Zhengyuan,YUAN Shuai,LI Xinhua. The analysis on the sources of water body and characteristic of water breakthough at Block 12 in Tahe Oilfield[J]. Lithologic Reservoirs, 2009, 21(4): 115 -119 .
[9] LI Xiangbo,CHEN Qi,lin,LIU Huaqing,WAN Yanrong,MU Jingkui,LIAO Jianbo,WEI Lihua. Three types of sediment gravity flows and their petroliferous features of Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2010, 22(3): 16 -21 .
[10] LIU Yun,LU Yuan,YI Xiangyi, ZHANG Junliang, ZHANG Jinliang,WANG Zhenxi. Gas hydrate forecasting model and its influencing factors[J]. Lithologic Reservoirs, 2010, 22(3): 124 -127 .
TRENDMD: