Lithologic Reservoirs ›› 2016, Vol. 28 ›› Issue (1): 72-76.doi: 10.3969/j.issn.1673-8926.2016.01.009

Previous Articles     Next Articles

Fractal characterization of casting thin sections : A case study from Kunbei area in Qaidam Basin

Chen Gengxin 1,2,Liu Yingru 1,2,Guo Ning 3,Wang Aiping 1,2,Chang Haiyan 1,2,Zhang Tingjing 1,2   

  1.  1. PetroChina Research Institute of Petroleum Exploration & Development - Northwest , Lanzhou 730020 , China ; 2. Key Laboratory of Reservoir Description , CNPC , Lanzhou 730020 , China 3. Research Institute of Exploration and Development , PetroChina Qinghai Oilfield Company , Dunhuang 736202 , Gansu , China
  • Online:2016-01-20 Published:2016-01-20

Abstract:

The conventional analysis of pore structure of casting thin sections is mainly limited to qualitative description of the picture. Effective information of pore structure can be obtained by using the image processing technology to calculate the fractal dimensions of pores. The quantitative relations of the fractal dimensions with porosity, sedimentary microfacies and productivity index were established. The fractal dimensions represent porosity and sorting features synthetically. The larger the porosity is, the better the sorting and connectivity are, and the larger the fractal dimension will be. In the Qie 6 reservoir in Kunbei area of Qaidam Basin, the fractal dimension limit between distributary channel and river mouth bar is 1.83, which can be used to distinguish microfacies. The fractal dimension has a quantificational positive-correlation with productivity index, so it can be used to predict the productivity index. By the fractal mathematics method, the semi-quantitative characterization of the pore structure of casting thin sections can be realized.

Key words: Tongxu Uplift , lithologic traps , tight sandstone gas , exploration prospects , Tongxu area , southern North China Basin

[1] SHAO Wei, ZHOU Daorong, LI Jianqing, ZHANG Chengcheng, LIU Tao. Key factors and favorable exploration directions for oil and gas enrichment in back margin sag of thrust nappe in Lower Yangtze [J]. Lithologic Reservoirs, 2024, 36(3): 61-71.
[2] WANG Xiaojuan, CHEN Shuangling, XIE Jirong, MA Hualing, ZHU Deyu, PANG Xiaoting, YANG Tian, LYU Xueying. Accumulation characteristics and main controlling factors of tight sandstone of Jurassic Shaximiao Formation in southwestern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(1): 78-87.
[3] HUANG Yanqing, LIU Zhongqun, WANG Ai, XIAO Kaihua, LIN Tian, JIN Wujun. Types and distribution of tight sandstone gas sweet spots of the third member of Upper Triassic Xujiahe Formation in Yuanba area, Sichuan Basin [J]. Lithologic Reservoirs, 2023, 35(2): 21-30.
[4] XIONG Jiabei, HE Dengfa. Distribution characteristics and controlling factors of global giant carbonate stratigraphic-lithologic oil and gas fields [J]. Lithologic Reservoirs, 2022, 34(1): 187-200.
[5] LIU Huan, SU Qin, ZENG Huahui, MENG Huijie, ZHANG Xiaomei, YONG Yundong. Application of near-surface Q compensation technology in tight gas exploration in central Sichuan Basin [J]. Lithologic Reservoirs, 2021, 33(3): 104-112.
[6] HOU Kefeng, LI Jinbu, ZHANG Ji, WANG Long, TIAN Min. Evaluation and development countermeasures of undeveloped reserves in Sulige tight sandstone gas reservoir [J]. Lithologic Reservoirs, 2020, 32(4): 115-125.
[7] LIU Yuzuo, SHI Wanzhong, LIU Kai, WANG Ren, WU Rui. Natural gas accumulation patterns of Upper Paleozoic in eastern Hangjinqi area,Ordos Basin [J]. Lithologic Reservoirs, 2020, 32(3): 56-67.
[8] LIU Na, ZHOU Zhaohua, REN Dazhong, NAN Junxiang, LIU Dengke, DU Kun. Distribution characteristics and controlling factors of movable fluid in tight sandstone gas reservoir: a case study of the eighth member of Xiashihezi Formation and the first member of Shanxi Formation in western Sulige Gas Field [J]. Lithologic Reservoirs, 2019, 31(6): 14-25.
[9] REN Dazhong, ZHOU Zhaohua, LIANG Ruixiang, ZHOU Ran, LIU Na, NAN Junxiang. Characteristics of clay minerals and its impacts on reservoir quality of tight sandstone gas reservoir: a case from Sulige Gas Field,Ordos Basin [J]. Lithologic Reservoirs, 2019, 31(4): 42-53.
[10] DUAN Zhiyou, LI Xianqing, CHEN Chunfang, MA Liyuan, LUO Yuan. Gas and water distribution and its controlling factors of Xiashihezi Formation in J58 well area,Hangjinqi area [J]. Lithologic Reservoirs, 2019, 31(3): 45-54.
[11] YIN Shuai, ZHAO Wei, Fan Ziyi. Paleo-tectonic restoration in southern Qinshui Basin and its hydrocarbon significance [J]. Lithologic Reservoirs, 2017, 29(6): 43-50.
[12] CHEN Zhiqiang, WU Siyuan, BAI Rong, LEI Gang. Logging evaluation for permeability of tight sandstone gas reservoirs based on flow unit classification:a case from Xujiahe Formation in Guang' an area,central Sichuan Basin [J]. Lithologic Reservoirs, 2017, 29(6): 76-83.
[13] YANG Tebo, WANG Jiping, WANG Yi, FU Bin, XUE Wen, HAO Qian. Reservoir modeling of tight sandstone gas reservoir based on geological knowledge database:a case from Su X block in Sulige Gas Field [J]. Lithologic Reservoirs, 2017, 29(4): 138-145.
[14] ZHAO Xianzheng, WANG Quan, DAN Weining, WANG Wenying, QIAO Xiaoxia, REN Chunling. Exploration discovery and prospects of Cretaceous stratigraphic-lithologic reservoirs in Erlian Basin [J]. Lithologic Reservoirs, 2017, 29(2): 1-9.
[15] WEI Xinshan, HU Aiping, ZHAO Huitao, KANG Rui, SHI Xiaoying, LIU Xiaopeng. New geological understanding of tight sandstone gas [J]. Lithologic Reservoirs, 2017, 29(1): 11-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Qinlian, ZHENG Rongcai, XIAO Ling,WANG Chengyu, NIU Xiaobing. Influencing factors and characteristics of Chang 6 reservoir in Wuqi area, Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(4): 45 -50 .
[2] WANG Dongqi, YIN Daiyin. Empirical formulas of relative permeability curve of water drive reservoirs[J]. Lithologic Reservoirs, 2017, 29(3): 159 -164 .
[3] LI Yun, SHI Zhiqiang. Study on fluid inclusion of tight sandstone reservoir of Upper Triassic Xujiahe Formation in central Sichuan Basin[J]. Lithologic Reservoirs, 2008, 20(1): 27 -32 .
[4] JIANG Ren, FAN Tailiang, XU Shouli. Concept and techniques of seismic geomorphology[J]. Lithologic Reservoirs, 2008, 20(1): 33 -38 .
[5] ZOU Mingliang, HUANG Sijing, HU Zuowei, FENG Wenli, LIU Haoniannian. The origin of carbonate cements and the influence on reservoir quality of Pinghu Formation in Xihu Sag, East China Sea[J]. Lithologic Reservoirs, 2008, 20(1): 47 -52 .
[6] WANG Bingjie, HE Sheng, NI June, FANG Du. Activity analysis of main faults in Qianquan area, Banqiao Sag[J]. Lithologic Reservoirs, 2008, 20(1): 75 -82 .
[7] CHEN Zhenbiao, ZHANG Chaomo, ZHANG Zhansong, LING Husong, SUN Baodian. Using NMR T2 spectrum distribution to study fractal nature of pore structure[J]. Lithologic Reservoirs, 2008, 20(1): 105 -110 .
[8] ZHANG Houfu, XU Zhaohui. Discussion on stratigraphic-lithologic reservoirs exploration in the aspect of the research history of reservoirs[J]. Lithologic Reservoirs, 2008, 20(1): 114 -123 .
[9] ZHANG Xia. Cultivation of exploration creativity[J]. Lithologic Reservoirs, 2007, 19(1): 16 -20 .
[10] YANG Wuyang, YANG Wencai, LIU Quanxin, WANG Xiwen. 3D frequency and space domain amplitude-preserved migration with viscoelastic wave equations[J]. Lithologic Reservoirs, 2007, 19(1): 86 -91 .
TRENDMD: