Lithologic Reservoirs ›› 2016, Vol. 28 ›› Issue (2): 72-80.doi: 10.3969/j.issn.1673-8926.2016.02.010

Previous Articles     Next Articles

Estimation of denudation thickness of Mesozoic strata and paleostructure restoration in Zhenjing area, Ordos Basin

Li Chao 1,Zhang Liqiang 1,Zhang Likuan 2,Wang Peng 3,Hu Caizhi 4,Zhang Haisen 3   

  1.  1. School of Geoscience , China University of Petroleum , Qingdao 266580 , Shandong , China ; 2. Institute of Geology and Geophysics , Chinese Academy of Science , Beijing 100029 , China ; 3. No. 10 Oil Production Plant , PetroChina Changqing Oilfield Company , Qingyang 745600 , Gansu , China ; 4. Sinopec Research Institute of Exploration & Production , Beijing 100083 , China
  • Online:2016-03-20 Published:2016-03-20

Abstract:

The Mesozoic and the overlain strata in Zhenjing area underwent four stages of formation uplift and denudation events corresponding to the unconformity surfaces of Jurassic-Triassic, Jurassic Yanan Formation-Zhiluo Formation, Jurassic-Cretaceous and Cretaceous-Quaternary. Compaction curve extrapolation method and formation tendency correlation method were used to estimate the denudation thickness resulted by the four stages of tectonic uplift events from Triassic, and the denudation thicknesses from different stages were compared. Basin numerical modeling method was applied to restore the structural evolution process of the top surface of Chang 8 oil reservoir set. The result shows that the strata denudation thickness of the end of Triassic Yanchang Formation is 345-465 m, the strata denudation thickness of the end of Middle Jurassic Yan’an Formation changes from 150 m to 220 m, and the strata denudation thickness of the end of Jurassic Anding Formation is 160-250 m. However, the denudation thickness of the end of Late Cretaceous-Neogene Zhidan group is much more than that of the other three stages, and it varies from 980 m to 1 280 m. The structural form of Yanchang Formation in the study area was controlled by tectonic subsidence and uplift and denudation, with tilting structural evolution process from Triassic.

Key words: low porosity and low permeability , rock petrophysical analysis , frequency dividing attribute technique of advantage trace , curve reconstruction , prestack inversion , Pearl River Mouth Basin

[1] HE Wenyuan, CHEN Keyang. Prediction method for lithologic reservoirs in Doshan slope zone of South Turgai Basin,Kazakhstan [J]. Lithologic Reservoirs, 2024, 36(4): 1-11.
[2] HE Yanbing, XIAO Zhangbo, ZHENG Yangdi, LIU Junyi, YI Hao, ZHAO Qing, ZHANG Yuexia, HE Yong. Hydrocarbon accumulation characteristics of Mesozoic Lufeng 7-9 buried hill in Lufeng 13 subsag transition zone,Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2023, 35(3): 18-28.
[3] HUANG Junli, ZHANG Wei, LIU Lihui, CAI Guofu, ZENG Youliang, MENG Qingyou, LIU Hao. Ternary seismic configuration interpretation technology of Paleogene Wenchang Formation in Panyu 4 depression, Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2023, 35(2): 103-112.
[4] HE Yong, QIU Xinwei, LEI Yongchang, XIE Shiwen, XIAO Zhangbo, LI Min. Tectonic evolution and hydrocarbon accumulation characteristics of Cenozoic in eastern Lufeng 13 subsag, Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2023, 35(1): 74-82.
[5] ZHANG Weiwei, LIU Jun, LIU Lihui, ZHANG Xiaozhao, BAI Haijun, YANG Dengfeng. Lithology prediction technology and its application of Paleogene Wenchang Formation in Panyu 4 depression,Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2022, 34(6): 118-125.
[6] ZHOU Hongfei, DAI Xin, JIA Min, ZHANG Rui, LI Guohui, LI Nan, YANG Qiang, BAI Rong. Hydrocarbon accumulation characteristics of the second member of Sinian Dengying Formation in the north slope of central Sichuan paleo-uplift [J]. Lithologic Reservoirs, 2022, 34(5): 130-138.
[7] WANG Maozhen, WU Kui, GUO Tao, HUI Guanzhou, HAO Yiwei. Reservoir characteristics and controlling factors of the second member of Paleogene Shahejie Formation in southeastern margin of Liaodong Sag [J]. Lithologic Reservoirs, 2022, 34(4): 66-78.
[8] LI Chengze, CHEN Guojun, TIAN Bing, YUAN Xiaoyu, SUN Rui, SU Long. Water-rock interaction in deep strata under high temperature and high pressure in Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2022, 34(4): 141-149.
[9] ZHANG Wei, LI Lei, QIU Xinwei, GONG Guangchuan, CHENG Linyan, GAO Yifan, YANG Zhipeng, YANG Lei. A/S control on spatiotemporal evolution of deltas in rifted lacustrine basin and its numerical simulation: A case study of Paleogene Wenchang Formation in Lufeng 22 subsag,Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2022, 34(3): 131-141.
[10] ZHAO Jun, HAN Dong, HE Shenglin, TANG Di, ZHANG Tao. Identification of fluid properties of low contrast reservoir based on water-gas ratio calculation [J]. Lithologic Reservoirs, 2021, 33(4): 128-136.
[11] XIANG Qiaowei, LI Xiaoping, DING Lin, DU Jiayuan. Formation mechanism and petroleum geological significance of Paleogene sandstone with high natural gamma value in Zhuyi Depression, Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2021, 33(2): 93-103.
[12] LUO Ze, XIE Mingying, LIANG Jie, TU Zhiyong, HOU Kai. Macro-correction method and application of seismic pseudo-well velocity point: a case study from M gas field in Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2020, 32(3): 115-121.
[13] DU Xulin, DAI Zong, XIN Jing, LI Hailong, CAO Renyi, LUO Donghong. Three-dimensional water flooding physical simulation experiment of horizontal well in heavy oil reservoir with strong bottom water [J]. Lithologic Reservoirs, 2020, 32(2): 141-148.
[14] LUO Ze, XIE Mingying, TU Zhiyong, WEI Xihui, CHEN Yiming. A set of recognition techniques for thin reservoirs with unconsolidated high-argillaceous sandstone: a case study from X oilfield in Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2019, 31(6): 95-101.
[15] DU Guichao, SU Long, CHEN Guojun, ZHANG Gongcheng, DING Chao, CAO Qing, LU Yuexin. Carbonate cements and its effect on reservoir property of shallow marine sandstones of Zhuhai Formation in Panyu low-uplift,Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2019, 31(3): 10-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DUAN Tianxiang,LIU Xiaomei,ZHANG Yajun,XIAO Shuqin. Discussion on geologic modeling with Petrel[J]. Lithologic Reservoirs, 2007, 19(2): 102 -107 .
[2] ZHANG Liqiu. Optimization of upward strata combination of second class oil layer in eastern south Ⅱ area of Daqing Oilfield[J]. Lithologic Reservoirs, 2007, 19(4): 116 -120 .
[3] ZHANG Di,HOU Zhongjian,WANG Yahui,WANG Ying,WANG Chunlian. Sedimentary characteristics of lacustrine carbonate rocks of the first member of Shahejie Formation in Banqiao-Beidagang area[J]. Lithologic Reservoirs, 2008, 20(4): 92 -97 .
[4] FAN Huaicai, LI Xiaoping, DOU Tiancai, WU Xinyuan. Study on stress sensitivity effect on flow dynamic features of gas wells[J]. Lithologic Reservoirs, 2010, 22(4): 130 -134 .
[5] TIAN Shufang,ZHANG Hongwen. Application of life cycle theory to predict increasing trend of proved oil reserves in Liaohe Oilfield[J]. Lithologic Reservoirs, 2010, 22(1): 98 -100 .
[6] YANG Kai,GUO Xiao. Numerical simulation study of three-dimensional two-phase black oil model in fractured low permeability reservoirs[J]. Lithologic Reservoirs, 2009, 21(3): 118 -121 .
[7] ZHAI Zhongxi, QINWeijun, GUO Jinrui. Quantitative relations between oil-gas filling degree and channel seepage flow capacity of the reservoir:Example of Shuanghe Oilfield in Biyang Depression[J]. Lithologic Reservoirs, 2009, 21(4): 92 -95 .
[8] QI Minghui,LU Zhengyuan,YUAN Shuai,LI Xinhua. The analysis on the sources of water body and characteristic of water breakthough at Block 12 in Tahe Oilfield[J]. Lithologic Reservoirs, 2009, 21(4): 115 -119 .
[9] LI Xiangbo,CHEN Qi,lin,LIU Huaqing,WAN Yanrong,MU Jingkui,LIAO Jianbo,WEI Lihua. Three types of sediment gravity flows and their petroliferous features of Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2010, 22(3): 16 -21 .
[10] LIU Yun,LU Yuan,YI Xiangyi, ZHANG Junliang, ZHANG Jinliang,WANG Zhenxi. Gas hydrate forecasting model and its influencing factors[J]. Lithologic Reservoirs, 2010, 22(3): 124 -127 .
TRENDMD: