Lithologic Reservoirs ›› 2018, Vol. 30 ›› Issue (3): 43-51.doi: 10.12108/yxyqc.20180306

Previous Articles     Next Articles

Influences of soluble organic matter on reservoir properties of shale

CAO Taotao1, DENG Mo2, LIU Hu3, SONG Zhiguang4, CAO Qinggu2, HUANG Yanran1   

  1. 1. Hunan Provincial Key Laboratory of Shale Gas Resource Utilization, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China;
    2. Wuxi Research Institute of Petroleum Geology, Sinopec, Wuxi 214126, Jiangsu, China;
    3. Sichuan Key Laboratory of Shale Gas Evaluation and Exploration, Chengdu 600091, China;
    4. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
  • Received:2017-11-25 Revised:2018-01-04 Online:2018-05-21 Published:2018-05-21

Abstract: Soluble organic matter is an important part of organic matter. In order to study the effect of soluble organic matter on shale reservoir properties, the shales of Longmaxi Formation and Dalong Formation in northeastern Sichuan Basin were analyzed in the aspects of TOC content, rock pyrolysis, scanning electronic microscope, scanning electron microscopy combined with argon ion polishing, and the extraction of soluble organic matter and low-pressure N2 and methane adsorption experiments were carried out. The results show that: (1)Soluble organic matters are mainly existing in the surface and meso-macropore of kerogen, clay minerals and framboid pyrites in shales, especially low-maturity shales. (2)The specific surface area and methane adsorption capacity of extracted shale samples increased obviously compared with raw shale samples from Dalong Formation,while there are no obvious changes of specific surface area and methane adsorption capacity between the extracted shale samples and raw shale samples from Longmaxi Formation, indicating that the soluble organic matters in low-maturity shales could hinder the connectivity of pores and decrease methane adsorption capacity,but it has no obvious effect of soluble organic matter on high-maturity shales due to a low content of soluble matter in these shales. (3)Soluble organic matter content has a significant negative correlation with fractal dimension for Dalong shales,but has a positive correction for Longmaxi shales, indicating that soluble organic matter has an opposite effect on the pore heterogeneity for these two sets of shales with different maturities. (4)After extracting the soluble organic matter, fractal dimension values has a decreasing phenomenon for both extracted Dalong and Longmaxi shales, suggesting that the connectivity and uniformity of the pores are improved due to removing the soluble organic matter existing in shale pores. Therefore, through this study, soluble organic matter is deemed to an important factor of reservoir properties of shale,and it should be taken into consideration when characterizing the physical properties of the low-maturity shales.

CLC Number: 

  • TE122.2
[1] MILLKIN K L, RUDNICKI M, AWWILLER D, et al. Organic matter-hosted pore system, Marcellus Formation(Devonian), Pennsylvnia. AAPG Bulletin, 2013, 97(2):177-200.
[2] 李可, 王兴志, 张馨艺, 等.四川盆地东部下志留统龙马溪组页岩储层特征及影响因素.岩性油气藏, 2016, 28(5):52-58. LI K, WANG X Z, ZHANG X Y, et al. Shale reservoir characteristics and influencing factors of the Lower Silurian Longmaxi Formation in the eastern Sichuan Basin. Lithologic Reservoirs, 2016, 28(5):52-58.
[3] 彭波, 刘羽琛, 漆富成, 等.湘西北地区新元古界陡山沱组页岩气成藏条件.岩性油气藏, 2017, 29(4):47-54. PENG B, LIU Y C, QI F C, et al. Shale gas accumulation conditions of Neoproterozoic Doushantuo Formation in NW Hunan province. Lithologic Reservoirs, 2017, 29(4):47-54.
[4] 胡博文, 李斌, 鲁东升, 等.页岩气储层特征及含气性主控因素——以湘西北保靖地区龙马溪组为例.岩性油气藏, 2017, 29(3):83-91. HU B W, LI B, LU D S, et al. Characteristics and main controlling factors of shale gas reservoirs:a case from Longmaxi Formation in Baojing area, NW Hunan province. Lithologic Reservoirs, 2017, 29(3):83-91.
[5] 崔景伟, 朱如凯, 吴松涛, 等.黄铁矿在页岩有机质富集、生排烃与页岩油聚集中的作用.地质论评, 2013, 59(增刊1):783-784. CUI J W, ZHU R K, WU S T, et al. The effect of pyrite on organic matter enrichment, hydrocarbon generation and expulsion and oil accumulation in shale. Geological Review, 2013, 59(Suppl 1):783-784.
[6] LIN W, MASTALERZ M, SCHIMMELMANN A, et al. Influence of Soxhlet-extractable bitumen and oil on porosity in thermally maturing organic-rich shales. International Journal of Coal Geology, 2014, 132(12):38-50.
[7] HU H Y, ZHANG T W, WIGGINS-CAMACHO J D, et al. Experimental investigation of changes in methane adsorption of bitumen-free Woodford shale with thermal maturation induced by hydrous pyrolysis. Marine and Petroleum Geology, 2015, 59(1):114-128.
[8] 刘国恒, 黄志龙, 姜振学, 等.湖相页岩液态烃对页岩吸附气实验的影响——以鄂尔多斯盆地延长组页岩为例.石油实验地质, 2015, 37(5):648-654. LIU G H, HUANG Z L, JIANG Z X, et al. effect of liquid hydrocarbons on gas adsorption in a lacustrine shale:a case study of the Yanchang Formation, Ordos Basin. Petroleum Geology and Experiment, 2015, 37(5):648-654.
[9] 李成成, 周世新, 李靖, 等.鄂尔多斯盆地南部延长组泥页岩孔隙特征及其控制因素.沉积学报, 2017, 35(2):315-329. LI C C, ZHOU S X, LI J, et al. Pore characteristics and controlling factors of the Yanchang Formation mudstone and shale in the south of Ordos Basin. Acta Sedimentologica Sinica, 2017, 35(2):315-329.
[10] VALENZA J J, DRENZEK N, MARQUES F, et al. Geochemical controls on shale microstructure. Geology, 2013, 41(5):611-614.
[11] 郭慧娟, 王香增, 张丽霞, 等.抽提前/后成熟页岩对氮气、二氧化碳的吸附特征及其对孔隙研究的意义.地球化学, 2014, 43(4):408-414. GUO H J, WANG X Z, ZHANG L X, et al. Adsorption of N2 and CO2 on mature shales before and after extraction and its implication for investigations of pore structures. Geochimica, 2014, 43(4):408-414.
[12] 潘磊, 肖贤明, 周秦. 可溶有机质对表征页岩储层特性的影响.天然气地球科学, 2015, 26(9):1729-1736. PAN L, XIAO X M, ZHOU Q. Influence of soluble organic matter on characterization of shale reservoir. Natural Gas Geoscience, 2015, 26(9):1729-1736.
[13] 李建忠, 董大忠, 陈更生, 等.中国页岩气资源前景与战略地位.天然气工业, 2009, 29(5):11-16. LI J Z, DONG D Z, CHEN G S, et al. Prospects and strategic position of shale gas resources in China. Natural Gas Industry, 2009, 29(5):11-16.
[14] 梁狄刚, 郭彤楼, 陈建平, 等.中国南方海相生烃成藏研究的若干新进展(一):南方四套区域性海相烃源岩的分布.海相油气地质, 2008, 13(2):1-16. LIANG D G, GUO T L, CHEN J P, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China(Part 1):Distribution of four regional marine source rocks. Marine Origin Petroleum Geology, 2008, 13(2):1-16.
[15] 孙丽娜, 张明峰, 吴陈君, 等.油页岩生排烃模拟实验中不同液态烃产物特征.岩性油气藏, 2017, 29(6):23-31. SUN L N, ZHANG M F, WU C J, et al. Features of liquid hydrocarbon in different states in oil shale during hydrous pyrolysis. Lithologic Reservoirs, 2017, 29(6):23-31.
[16] 罗进雄, 何幼斌.中上扬子地区二叠系烃源岩特征.天然气地球科学, 2014, 25(9):1416-1425. LUO J X, HE Y B. Characteristics of the Permian source rocks in the Middle and Upper Yangtze region. Natural Gas Geoscience, 2014, 25(9):1416-1425.
[17] 雷裕红, 王晖, 罗晓容, 等.鄂尔多斯盆地张家滩页岩液态烃特征及对页岩气量估算的影响.石油学报, 2016, 37(8):952-961. LEI Y H, WANG H, LUO X R, et al. The characteristics of liquid hydrocarbon in Zhangjiatan shale, Ordos Basin and its effects on the estimation of shale gas amount. Acta Petrolei Sinica, 2016, 37(8):952-961.
[18] 崔景伟, 邹才能, 吴松涛, 等.页岩孔隙研究新进展.地球科学进展, 2012, 27(12):1319-1325. CUI J W, ZOU C N, WU S T, et al. New advances in shale porosity research. Advances in Earth Science, 2012, 27(12):1319-1325.
[19] CHALMERS G R L, BUSTIN R M. Lower Cretaceous gas shales in northeastern British Columbia, PartⅠ:Geological controls on methane sorption capacity. Bulletin of Canadian Petroleum Geology, 2008, 56(1):1-22.
[20] 崔景伟, 朱如凯, 崔京钢.页岩孔隙演化及其与残留烃量的关系:来自地质过程约束下模拟实验的证据.地质学报, 2013, 87(5):730-736. CUI J W, ZHU R K, CUI J G. Relationship of porous evolution and residual hydrocarbon:Evidence from modeling experiment with geological constrains. Acta Geologica Sinica, 2013, 87(5):730-736.
[21] MASTALERZ M, SCHMMELMANN A, DROBNIAK A, et al. Porosity of Devonian and Mississippian New Albany shale across a maturation gradient:Insights from organic petrology, gas adsorption, and mercury intrusion. AAPG Bulletin, 2013, 97(10):1621-1643.
[22] GUO H J, JIA W L, PENG P A, et al. Evolution of organic matter and nanometer-scale pores in an artificially matured shale undergoing two distinct types of pyrolysis:a study of the Yanchang Shale with Type Ⅱ kerogen. Organic Geochemistry, 2017, 105(3):56-66.
[23] 李恒超, 刘大永, 彭平安, 等.人工熟化过程中可溶有机质对页岩孔隙特征的影响.地球化学, 2017, 46(5):466-475. LI H C, LIU D Y, PENG P A, et al. Effect of extractable organic matter on pore characteristics of shales treated by artificial heating. Geochimica, 2017, 46(5):466-475.
[24] 梁利喜, 熊健, 刘向君, 等.川南地区龙马溪组页岩孔隙结构的分形特征.成都理工大学学报(自然科学版), 2016, 42(6):700-708. LIANG L X, XIONG J, LIU X J, et al. Fractal characteristics of pore structure of Longmaxi Formation shale in south of Sichuan Basin, China. Journal of Chengdu University of Technology (Science and Technology Edition), 2016, 42(6):700-708.
[25] 王志伟, 卢双舫, 王民, 等.湖相、海相泥页岩孔隙分形特征对比.岩性油气藏, 2016, 28(1):88-93. WANG Z W, LU S F, WANG M, et al. Fractal characteristics of lacustrine shale and marine shale. Lithologic Reservoirs, 2016, 28(1):88-93.
[26] AVNIR D, JARONIEC M. An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials. Langmuir, 1989, 5(6):1431-1433.
[27] WANG M, XUE H T, TIAN S S, et al. Fractal characteristics of Upper Cretaceous lacustrine shale from the Songliao Basin, NE China. Marine and Petroleum Geology, 2015, 67(11):144-153.
[28] 范泓澈, 黄志龙, 袁剑, 等.高温高压条件下甲烷和二氧化碳溶解度试验.中国石油大学学报(自然科学版), 2011, 35(2):6-11. FAN H C, HUANG Z L, YUAN J, et al. Experiment on solubility of CH4 and CO2 at high temperature and high pressure. Journal of China University of Petroleum, 2011, 35(2):6-11.
[1] YU Qixiang, LUO Yu, DUAN Tiejun, LI Yong, SONG Zaichao, WEI Qingliang. Reservoir forming conditions and exploration prospect of Jurassic coalbed methane encircling Dongdaohaizi sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(6): 45-55.
[2] YIN Lu, LI Bo, QI Wen, SUN Dong, YUE Xingfu, MA Hui. Origins and accumulation characteristics of large-scale generation of natural hydrogen [J]. Lithologic Reservoirs, 2024, 36(6): 1-11.
[3] XIAO Boya. Characteristics and favorable zone distribution of tuff reservoirt of Cretaceous in A’nan sag,Erlian Basin [J]. Lithologic Reservoirs, 2024, 36(6): 135-148.
[4] WANG Zixin, LIU Guangdi, YUAN Guangjie, YANG Henglin, FU Li, WANG Yuan, CHEN Gang, ZHANG Heng. Characteristics and reservoir control of source rocks of Triassic Chang 7 member in Qingcheng area,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(5): 133-144.
[5] WEI Chenglin, ZHANG Fengqi, JIANG Qingchun, LU Xuesong, LIU Gang, WEI Yanzhao, LI Shubo, JIANG Wenlong. Formation mechanism and evolution characteristics of overpressure in deep Permian in eastern Fukang Sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(5): 167-177.
[6] ZHANG Xiaoli, WANG Xiaojuan, ZHANG Hang, CHEN Qin, GUAN Xu, ZHAO Zhengwang, WANG Changyong, TAN Yaojie. Reservoir characteristics and main controlling factors of Jurassic Shaximiao Formation in Wubaochang area,northeastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 87-98.
[7] SHEN Youyi, WANG Kaifeng, TANG Shuheng, ZHANG Songhang, XI Zhaodong, YANG Xiaodong. Geological modeling and“sweet spot”prediction of Permian coal measures shale reservoirs in Yushe-Wuxiang block,Qinshui Basin [J]. Lithologic Reservoirs, 2024, 36(4): 98-108.
[8] WANG Tongchuan, CHEN Haoru, WEN Longbin, QIAN Yugui, LI Yuzhuo, WEN Huaguo. Identification and reservoir significance of Carboniferous karst paleogeomorphology in Wubaiti area,eastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(4): 109-121.
[9] TIAN Ya, LI Junhui, CHEN Fangju, LI Yue, LIU Huaye, ZOU Yue, ZHANG Xiaoyang. Tight reservoir characteristics and favorable areas prediction of Lower Cretaceous Nantun Formation in central fault depression zone of Hailar Basin [J]. Lithologic Reservoirs, 2024, 36(4): 136-146.
[10] ZHU Biao, ZOU Niuniu, ZHANG Daquan, DU Wei, CHEN Yi. Characteristics of shale pore structure and its oil and gas geological significance of Lower Cambrian Niutitang Formation in Fenggang area,northern Guizhou [J]. Lithologic Reservoirs, 2024, 36(4): 147-158.
[11] XIA Maolong, ZHANG Benjian, ZENG Yiyang, JIA Song, ZHAO Chunni, FENG Mingyou, LI Yong, SHANG Junxin. Main controlling factors and distribution of reservoirs of the second member of Sinian Dengying Formation in Penglai gas field,central Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(3): 50-60.
[12] SHAO Wei, ZHOU Daorong, LI Jianqing, ZHANG Chengcheng, LIU Tao. Key factors and favorable exploration directions for oil and gas enrichment in back margin sag of thrust nappe in Lower Yangtze [J]. Lithologic Reservoirs, 2024, 36(3): 61-71.
[13] HE Wenyuan, ZHAO Ying, ZHONG Jianhua, SUN Ningliang. Characteristics and significance of micron pores and micron fractures in shale oil reservoirs of Cretaceous Qingshankou Formation in Gulong sag,Songliao Basin [J]. Lithologic Reservoirs, 2024, 36(3): 1-18.
[14] JI Yubing, GUO Bingru, MEI Jue, YIN Zhijun, ZOU Chen. Fracture modeling of shale reservoirs of Silurian Longmaxi Formation in Luobu syncline in Zhaotong National Shale Gas Demonstration Area, southern margin of Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(3): 137-145.
[15] LEI Tao, MO Songyu, LI Xiaohui, JIANG Nan, ZHU Chaobin, WANG Qiao, QU Xuejiao, WANG Jia. Sandbody superimposition patterns and oil and gas exploration significance of Permian Shanxi Formation in Daniudi gas field,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(2): 147-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Lithologic Reservoirs, 2022, 34(2): 0 .
[2] LI Zaiguang,LI Lin. Automatic mapping based on well data[J]. Lithologic Reservoirs, 2007, 19(2): 84 -89 .
[3] CHENG Yuhong,GUO Yanru,ZHENG Ximing,FANG Naizhen,MA Yuhu. The interpretation method and application effect determined by multiple seismic and logging factors[J]. Lithologic Reservoirs, 2007, 19(2): 97 -101 .
[4] LIU Juntian,JIN Zhenjia,LI Zaiguang,TAN Xinping,GUO Lin,WANG Bo,LIU Yuxiang. Controlling factors for lithologic hydrocarbon reservoirs and petroleum prospecting target in Xiaocaohu area , Taibei Sag[J]. Lithologic Reservoirs, 2007, 19(3): 44 -47 .
[5] SHANG Changliang, FU Shouxian. Application of 3D seismic survey in loess tableland[J]. Lithologic Reservoirs, 2007, 19(3): 106 -110 .
[6] WANG Changyong, ZHENG Rongcai, WANG Jianguo, CAO Shaofang, Xiao Mingguo. Sedimentary characteristics and evolution of Badaowan Formation of Lower Jurassic in northwest margin of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(2): 37 -42 .
[7] WANG Ke1 LIU Xianyang, ZHAO Weiwei, SONG Jianghai, SHI Zhenfeng, XIANG Hui. Char acter istics and geological significance of seismites of Paleogene in Yangxin Subsag of J iyang Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 54 -59 .
[8] SUN Hongbin, ZHANG Fenglian. Structural-sedimentary evolution char acter istics of Paleogene in Liaohe Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 60 -65 .
[9] LI Chuanliang. Can uplift r esult in abnormal high pr essur e in formation?[J]. Lithologic Reservoirs, 2008, 20(2): 124 -126 .
[10] WEI Qinlian,ZHENG Rongcai,XIAO Ling,MA Guofu,DOU Shijie,TIAN Baozhong. Study on horizontal heterogeneity in Serie Inferiere of Triassic in 438b block , Algeria[J]. Lithologic Reservoirs, 2009, 21(2): 24 -28 .
TRENDMD: