Lithologic Reservoirs ›› 2018, Vol. 30 ›› Issue (3): 92-99.doi: 10.12108/yxyqc.20180311

Previous Articles     Next Articles

Establishment of standard adsorption isotherms for shale reservoirs: a case of Chang 7 shale reservoir in Ordos Basin

HE Yanqing1, ZHENG Li2, YAN Changhui1, TIAN Yuanyuan1, WU Tingting1, ZHAO Kele1   

  1. 1. College of Energy, Chengdu University of Technology, Chengdu 610059 China;
    2. Xinjiang Keli New Technology Development Company Limited, Karamay 834000, Xinjiang, China
  • Received:2017-12-05 Revised:2018-02-27 Online:2018-05-21 Published:2018-05-21

Abstract: The composition of shale is complicated and the pore structure is diverse,which results in great difference in adsorption properties of shale. The adsorption isotherm curves of different rock samples in the same reservoir vary greatly. Thus,we need to establish a standard adsorption isotherm curves for shale. The adsorption isothermal experiments of shale samples from Chang 7 reservoir in Ordos Basin were carried out by low temperature liquid nitrogen method. The experimental curves were initially standardized and then classified according to the C value of the BET theory,taking the exponent of 2 as the standardized value. Then,the standard adsorption isothermal curve of all samples was used to fit the parameters of the four adsorption layer thickness equations in Matlab numerical analysis software to verify the adsorption isothermal curve. The fitting accuracy of the four adsorption layer thickness equations is:Carbon Black,square < Carbon Black,cube < Halsey < De Bore. Finally,the standard adsorption isothermal curves of each type of shale were obtained by parameter averaging. The standard of adsorption isothermal curve of shale reservoir,which stand a series of adsorption characteristics of reservoirs with similar surface properties,can be calculated directly in reservoir simulation and reservoir engineering use, reduce the data uncertainly caused by random selection of rock samples,simplify a lot of calculation process, and make the calculation result is representative.

CLC Number: 

  • TE348
[1] BRUNAUER S, EMMETT P H, TELLER E. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 1938, 60(2):309-319.
[2] CRANSTON R W, INKLEY F A. The determination of pore structures from nitrogen adsorption isotherms. Advances in Catalysts, 1957, 9:143-154.
[3] DE BOER J H, LINSEN B G, OSINGA T H. Studies on pore systems in catalysts:Ⅵ. The universal t curve. Journal of Catalysis, 1965, 4(6):643-648.
[4] LIPPENS B C, DE BOER J H. Studies on pore systems in catalysts Ⅴ. The T method. Journal of Catalysis, 1965, 4(3):319-323.
[5] LIPPENS B C, LINSEN B G, DE BOER J H. Studies on pore systems in catalysts Ⅰ. The adsorption of nitrogen; apparatus and calculation. Journal of Catalysis, 1964, 3(1):32-37.
[6] DE BOER J H, LINSEN B G, VAN DER P T, et al. Studies on pore systems in catalysts:Ⅶ. Description of the pore dimensions of carbon blacks by the T method catalysis. Journal of Catalysis, 1965, 4(6):649-653.
[7] LECLOUX A, PIRARD J P. The importance of standard isotherms in the analysis of adsorption isotherms for determining the porous texture of solids. Journal of Colloid Interface Science, 1979, 70(2):265-281.
[8] 陈诵英. 完全无模型孔分布计算法. 石油炼制与化工, 1982(12):29-35. CHEN S Y. Complete model-free hole distribution calculation method. Petrol Refining and Petrochemicals, 1982(12):29-35.
[9] 陈诵英.利用实测和标准等温线之差计算孔分布的新的简捷方法. 催化学报, 1983, 4(2):146-153. CHEN S Y. A new and simple method to calculate pore distribution using the difference between measured and standard isotherms. Chinese Journal of Catalysis, 1983, 4(2):146-153.
[10] 陈诵英.利用标准等温线分析活性炭的完全孔分布.化工学报, 1985, 36(3):373-379. CHEN S Y. Analysis of complete pore distribution of activated carbon using standard isothermal. Journal of Chemical Industry, 1985, 36(3):373-379.
[11] 吴良士, 白鸽, 袁忠信.矿物与岩石.北京:化学工业出版社, 2005:86-92. WU L S, BAI G, YUAN Z X. Minerals and rocks. Beijing:Chemical Industry Press, 2005:86-92.
[12] HALSEY G D. Physical adsorption on non-uniform surfaces. Journal of Chemical & Physical, 1948, 16(10):931-937.
[13] MAGEE R W. Evaluation of the external surface area of carbon black by nitrogen adsorption. American Chemistry Society, 1995, 68(4):590-600.
[14] CARRUTHERS J D, CUTTING P A, DAY R E. Standard data for adsorption of nitrogen at-196 degrees C on non-porous hydroxylated silica. Chemical Industry, 1968, 1(50):1772-1779.
[15] PIERCE C. The universal nitrogen isotherm. Physical & Chemical, 1968, 72(10):3673-3676.
[16] HANNA K M, OLDER I, BRUNAUER S. Pore structure analysis by oxygen adsorption T-curves and methods of analysis. Colloid Interface Science, 1973, 45(1):27-37.
[17] SHULL C G, AMER J. The determination of pore size distribution from gas adsorption data. Journal of the American Chemical Society, 1948, 70(4):1405-1410.
[18] LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 1981, 40(9):1361-1403.
[19] 近藤精一, 石川达雄. 吸附科学. 北京:化学工业出版社, 2005:32-96. KONDO E, ISHIKAWA T. Adsorption science. Beijing:Chemical Industry Press, 2005:32-96.
[20] 周理, 李明, 周业平.超临界甲烷在高活性炭上的吸附测量及其理论分析.中国科学:B辑化学, 2000, 31(1):49-56. ZHOU L, LI M, ZHOU Y P. Adsorption measurement and theoretical analysis of supercritical methane on high active carbon. Science in China:Series B Chemetry, 2000, 31(1):49-56.
[21] 杨华.硅镁胶的制备表征及其吸附性能研究.青岛:中国海洋大学, 2013. YANG H. Preparation and characterization of Gum Magnesium and its adsorption properties. Qingdao:Ocean University of China, 2013.
[22] 曹跃, 刘延哲, 陈义国, 等. 鄂尔多斯盆地东韩油区延长组长7-长9油气成藏条件及主控因素.岩性油气藏, 2018, 30(1):30-38. CAO Y, LIU Y Z, CHEN Y G, et al. Hydrocarbon accumulation conditions and main controlling factors of Chang 7-Chang 9 oil reservoirs of Yanchang Formation in Donghan region, Ordos Basin. Lithologic Reservoirs, 2018, 30(1):30-38.
[23] 林森虎, 汪梦诗, 袁选俊.大型坳陷湖盆定量化沉积相编图新方法——以鄂尔多斯盆地中部长7油层组为例. 岩性油气藏, 2017, 29(3):10-17. LIN S H, WANG M S, YUAN X J. A new quantitative method of sedimentary facies mapping of large lacustrine depression:a case from Chang 7 reservoir in central Ordos Basin. Lithologic Reservoirs, 2017, 29(3):10-17.
[24] 孙丽娜, 张明峰, 吴陈君, 等.油页岩生排烃模拟实验中不同液态烃产物特征.岩性油气藏, 2017, 29(6):23-31. SUN L N, ZHANG M F, WU C J, et al. Features of liquid hydrocarbon in different states in oil shale during hydrous pyrolysis. Lithologic Reservoirs, 2017, 29(6):23-31.
[25] 寇雨, 周文, 赵毅楠, 等.鄂尔多斯盆地延长组长7段陆相页岩吸附特性及控制因素.岩性油气藏, 2016, 28(6):52-57. KOU Y, ZHOU W, ZHAO Y N, et al. Adsorption characteristics, types and influencing factors of Chang 7 shale of Triassic Yanchang Formation in Ordos Basin. Lithologic Reservoirs, 2016, 28(6):52-57.
[26] 张作清, 孙建孟, 龚劲松, 等.页岩气储层含气量计算模型研究.岩性油气藏, 2015, 27(6):5-14. ZHANG Z Q, SUN J M, GONG J S, et al. Gas content calculation model of shale gas reservoir. Lithologic Reservoirs, 2015, 27(6):5-14.
[1] CHENG Jing, YAN Jianping, SONG Dongjiang, LIAO Maojie, GUO Wei, DING Minghai, LUO Guangdong, LIU Yanmei. Low resistivity response characteristics and main controlling factors of shale gas reservoirs of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Changning area,southern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(3): 31-39.
[2] LI Tian, DAI Zongyang, LI Yang, HUANG Lei, GONG Zhenchao, ZHAO Xiaoyang, ZHOU Xiaolong, HUANG Lan. Genesis of lacustrine dolomites of the fourth member of Paleogene Shahejie Formation in Leijia area, Western Liao Depression [J]. Lithologic Reservoirs, 2022, 34(2): 75-85.
[3] CAO Xusheng, HAN Yun, ZHANG Jizhuo, LUO Zhiwei. Influence of imbibition on the development of fractured low permeability conglomerate reservoir: a case stuey from Urho Formation in Mahu oilfield [J]. Lithologic Reservoirs, 2020, 32(4): 155-162.
[4] CUI Yongzheng, JIANG Ruizhong, GAO Yihua, QIAO Xin, WANG Qiong. Pressure transient analysis of hydraulic fractured vertical wells with variable conductivity for CO2 flooding [J]. Lithologic Reservoirs, 2020, 32(4): 172-180.
[5] AN Jie, TANG Meirong, CAO Zongxiong, WANG Wenxiong, CHEN Wenbin, WU Shunlin. Transformation of development model of horizontal wells in ultra-low permeability and low-pressure reservoirs [J]. Lithologic Reservoirs, 2019, 31(5): 134-140.
[6] WANG Yuepeng, LIU Xiangjun, LIANG Lixi. Anisotropy and energy evolution characteristics of Zhangjiatan continental shale of Yanchang Formation in Ordos Basin [J]. Lithologic Reservoirs, 2019, 31(5): 149-160.
[7] JIANG Ruizhong, ZHANG Fulei, CUI Yongzheng, PAN Hong, ZHANG Xu, ZHANG Chunguang, SHEN Zeyang. Pressure dynamic analysis of shale gas reservoirs considering stress sensitivity and complex migration [J]. Lithologic Reservoirs, 2019, 31(4): 149-156.
[8] JI Jinghao, XI Jiahui, ZENG Fenghuang, YANG Qigui. Unsteady productivity model of segmented multi-cluster fractured horizontal wells in tight oil reservoir [J]. Lithologic Reservoirs, 2019, 31(4): 157-164.
[9] JIANG Ruizhong, SHEN Zeyang, CUI Yongzheng, ZHANG Fulei, ZHANG Chunguang, YUAN Jianwei. Dynamical characteristics of inclined well in dual medium low permeability reservoir [J]. Lithologic Reservoirs, 2018, 30(6): 131-137.
[10] YIN Daiyin, XIANG Junhui, WANG Dongqi. Classification of Fuyang oil reservoir with ultra-low permeability around placanticline of Daqing Oilfield [J]. Lithologic Reservoirs, 2018, 30(1): 150-154.
[11] LI Youquan, HAN Xiuhong, YAN Yan, ZHANG Dezhi, ZHOU Zhiwei, MENG Fankun. Pressure transient analysis on CO2 huff and puff in low permeability reservoir [J]. Lithologic Reservoirs, 2017, 29(6): 119-127.
[12] LI Xiaolong, XU Huaru, LIU Xiaoqiang, WANG Tao, ZHANG Kaiwen, QU Zhanqing. Fracture morphology and production performance of radial well fracturing [J]. Lithologic Reservoirs, 2017, 29(6): 154-160.
[13] DENG Xuefeng. Optimization of reasonable production pressure difference of fractured horizontal well in low permeability tight reservoirs [J]. Lithologic Reservoirs, 2017, 29(1): 135-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Sijing,HUANG Peipei,WANG Qingdong,LIU Haonian,WU Meng,ZOU Mingliang. The significance of cementation in porosity preservation in deep-buried sandstones[J]. Lithologic Reservoirs, 2007, 19(3): 7 -13 .
[2] LIU Zhen,CHEN Yanpeng,ZHAO Yang,HAO Qi,XU Xiaoming,CHANG Mai. Distribution and controlling factors of hydrocarbon reservoirs in continental fault basins[J]. Lithologic Reservoirs, 2007, 19(2): 121 -127 .
[3] DING Chao,GUO Lan,YAN Jifu. Forming conditions of Chang 6 reservoir in Anding area of Zichang Oilfield[J]. Lithologic Reservoirs, 2009, 21(1): 46 -50 .
[4] LI Yanshan,ZHANG Zhansong,ZHANG Chaomo,CHEN Peng. Application of mercury injection data to Chang 6 reservoir classification in Changqing area[J]. Lithologic Reservoirs, 2009, 21(2): 91 -93 .
[5] LUO Peng,LI Guorong,SHI Zejin,ZHOU Dazhi,TANG Hongwei,ZHANG Deming. Analysis of sequence stratigraphy and sedimentary facies of M aokou Formation in southeastern Sichuan[J]. Lithologic Reservoirs, 2010, 22(2): 74 -78 .
[6] ZUO Guoping, TU Xiaolong, XIA Jiufeng. Study on volcanic reservoir types in Subei exploration area[J]. Lithologic Reservoirs, 2012, 24(2): 37 -41 .
[7] WANG Feiyu. Method to improve producing degree of thermal recovery horizontal wells and its application[J]. Lithologic Reservoirs, 2010, 22(Z1): 100 -103 .
[8] YUAN Yunfeng,CAI Ye,FAN Zuochun,JIANG Yiyang,QIN Qirong, JIANG Qingping. Fracture characteristics of Carboniferous volcanic reservoirs in Hongche fault belt of Junggar Basin[J]. Lithologic Reservoirs, 2011, 23(1): 47 -51 .
[9] YUAN Jianying, FU Suotang, CAO Zhenglin, YAN Cunfeng,ZHANG Shuichang, MA Dade. Multi-source hydrocarbon generation and accumulation of plateau multiple petroleum system in Qaidam Basin[J]. Lithologic Reservoirs, 2011, 23(3): 7 -14 .
[10] GENG Yanfei, ZHANG Chunsheng, HAN Xiaofeng, YANG Dachao. Study on formation mechanism of low resistivity gas bearing reservoir in Anyue-Hechuan area[J]. Lithologic Reservoirs, 2011, 23(3): 70 -74 .
TRENDMD: